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ABSTRACT 

The term Voice Activity Detector (VAD) refers to a class of signal processing 

methods that detects if short segments of a speech signal contain voiced or 

unvoiced signal data.  A VAD is normally using decision rules based on selected 

estimated signal features. VADs play a major role as a preprocessing block in a 

variety of speech processing applications such as speech enhancement, speech 

coding and speech recognition where it is desirable to classify voiced signal 

parts from unvoiced. This thesis presents a thorough investigation of modern 

VAD algorithms that are based on energy threshold, zero crossing and other 

statistical measures. The selected VAD algorithms are implemented in 

MATLAB and evaluated using objective parameters in different noise 

environments. The simulation results indicate that the selected methods produce 

favorable results in the noise environments with SNR above 5dB. VAD based 

on pattern recognition approach method proved effective when compared to 

those based on energy threshold, zero crossing measures and statistical 

measures.  
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1. INTRODUCTION 

 

1.1. Overview 

With the recent advances in speech signal processing techniques, the need to 

detect the presence of speech accurately in the incoming signal under different 

noise environments has become a major concern of the industry. The separation 

of speech segment from the non-speech segment in an audio signal is achieved 

using a Voice Activity Detectors (VAD). VAD‟s are a class signal processing 

methods that detects the presence or absence of speech in short segments of 

audio signal. 

A VAD has a pivotal role as a preprocessing block in wide range of speech 

applications. An integrated VAD in speech communication system, improves 

channel capacity, reduces co-channel interference and power consumption in 

portable electronic devices in cellular radio systems and allows simultaneous 

voice and data applications in multimedia communications [1], [2]. In slowly 

varying non-stationary environments where speech is corrupted by noise, a 

VAD is used to learn noise characteristics and estimate the noise spectrum [3]. 

Furthermore, the output from the VAD is helpful in improving the performance 

of the speech recognition systems which applies a technique called non-speech 

frame dropping (FD) to reduce the number of insertion errors caused by the 

noise [4]. 

1.2. Introduction 

A basic VAD works on the principle of extracting measured features from the 

incoming audio signal which is divided into frames of 5-40 ms duration. These 

extracted features from the audio signal are then compared to a threshold limit 

usually estimated from the noise only periods of the input signal and a VAD 

decision is computed. If the feature of the input frame exceed the estimated 

threshold value, a VAD decision (VAD = 1) is computed which declare that 

speech is present. Otherwise, a VAD decision (VAD = 0) is computed which 

declares the absence of speech in the input frame. The block diagram of a basic 

VAD is shown in fig 1.1. 
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Input                                                                          VAD 

Signal                         output 

 

 

 

Figure 1-1.Block Diagram of a VAD 

1.3. Objective 

The goal of this thesis is to carry out a thorough investigation of modern VAD 

algorithms based on energy threshold, zero crossing rate, and statistical 

measures and thereby implement the same in MATLAB. These algorithms are 

later compared for their correct classification of the input signal data into voiced 

and unvoiced classes in different noise environments such as airport, babble, 

restaurant and train environments with SNR values ranging from 0-15dB. These 

selected VAD algorithms are analyzed and evaluated using the four objective 

parameters [1] which are, 

(i) FEC (Front-End Clipping) 

(ii) MSC (Mid-Speech Clipping) 

(iii) OVER (Over Hang) 

(iv) NDS (Noise Detected as Speech) 

 

1.4. Framework 

Framework 1.2 outlines the framework for the implementation, comparison and 

evaluation of the VAD algorithms. The framework is mainly divided into two 

blocks. In the first block, the VAD algorithms are implemented in MATLAB 

and the signal data is classified into voiced and unvoiced segments and the 

decisions are computed. The VAD decisions obtained from the first block are 

passed into the second block, where a reference VAD decision data recorded in 
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a quiet environment is used to calculate the performance attributes FEC, MSC, 

OVER and NDS. Using these parameters, the VAD algorithms are compared 

and evaluated. 

 

Figure 1-2.Framework for implementation, comparison and evaluation of VAD 

algorithms 

1.5. Thesis Outline 

This thesis report is outlined in five chapters. The first chapter introduces the 

Voice Activity Detectors (VADs), explains the working principle of a basic 

VAD, objective of this thesis work and framework to implement these VAD 

methods in MATLAB. 

In chapter 2 describes five VAD methods are described which are VAD based 

on Zero Crossing Rate and Energy measurement, Linear based Energy Detector 

(LED), Adaptive Linear based Energy Detector (ALED), VAD based on pattern 

recognition approach and VAD based on Statistical Measures.  

Chapter 3 explains the evaluation of the methods using four objective 

parameters, front end clipping (FEC), mid speech clipping (MSC), OVER (Over 

                  Manually marked VAD data 
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Hang) and NDS (Noise Detected as Speech) which are described with formulas 

and figure. This is followed by a brief description about the test database used 

for evaluating the methods. 

In chapter 4, the analysis and results for each method are presented using tables 

containing calculations obtained from objective parameters. 

Chapter 5 ends with the conclusion of the thesis work. 
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2. VAD METHODS 

Over the years, different approaches have been proposed for the detection of 

speech segments in the input signal data. The early VAD algorithms were based 

on extracting features such as short-time energy, zero crossing rate, linear 

prediction [5] and pitch analysis [6]. In the recent years, classification of voiced 

and unvoiced segments was based on cepstral coefficients [7], wavelet 

transform [8], periodicity measure [9] and statistical models [10]. 

In this thesis, five different VAD algorithms based on short-time energy, zero 

crossing and statistical measures are presented. 

2.1. VAD based on zero crossing rate and energy [11] 

This method is a simple and fast approach method to divide the given speech 

signals into voiced and unvoiced classes. The method works on the combination 

of zero crossing rate and energy calculations.  

2.1.1.Zero Crossing Measurement 

Zero crossing rate can be defined as the number of times the successive samples 

in a speech signal have different algebraic signs or the amplitude of signal 

crosses the value of zero. Equation 2.1 defines the zero crossing count, 𝑍𝑛  as, 

𝑍𝑛 =    𝑠𝑔𝑛 𝑥 𝑚   −  𝑠𝑔𝑛 𝑥 𝑚 − 1   𝑤(𝑛 −𝑚)

∞

𝑚= −∞

             (2.1) 

Where 

   𝑠𝑔𝑛 𝑥 𝑚  =  
1      𝑥 𝑚 ≥ 0
−1      𝑥 𝑚 < 0  

  

𝑤 𝑛 =   
1

2𝑁
,    0 ≤ 𝑛 ≤ 𝑁 − 1

0,               𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

N is the duration of the window used in the method. 
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Zero crossing rate indicates the presence or absence of speech in the input 

signal. If the zero crossing rate is high, the frame is considered to be unvoiced 

and if it is low, the frame is considered to be voiced frame. 

2.1.2.Short-Time Energy 

Short-time energy calculation is another parameter used in the classification of 

voiced and unvoiced segments. If the energy of the incoming frame is high, the 

frame is classified into voiced frame and if the energy of the incoming frame is 

low, it is classified into unvoiced frame. The short-time energy of the frame, 

𝑥 𝑚  denoted by 𝐸𝑛  is defined according to the equation (2.2) as 

                                     [𝑥 𝑚 𝑕(𝑛 −𝑚)]2                                           (2.2)

∞

𝑚 = −∞

 

Where, 

𝑕 𝑛 =   
0.54 − 0.46 cos  

2𝜋𝑛

𝑁 − 1
 ,                0 ≤ 𝑛 ≤ 𝑁 − 1

0,                                                      𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

In this method hamming window is used which give much attenuation outside 

the band pass when compared to the rectangular window. 

2.1.3. Implementation 

The data flow for classifying the input signal into voiced or unvoiced segments 

is done as shown in the block diagram of figure 2.1. The method begins with 

end point detection which is a process of detecting the starting and ending point 

of a speech utterance. Following the detection of end points, small sample of 

silence interval prior to the commencement of speech signal is taken and short-

time energy and zeros-crossing rates are calculated. These measures are used as 

thresholds for energy and zero crossing rate. 

In the frame by frame block, the speech signal is divided into non-overlapping 

frames of 400 samples at 8 KHz sampling frequency which is equivalent to 

50ms time duration. Short time energy and average zero crossing rate measures 

of these frames are compared with their threshold values. The frames are 
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classified as voiced segments if the short time energy of the frame is greater 

than its calculated threshold and the average zero crossing rate is less than the 

zero crossing threshold. Else, the frames are classified as unvoiced segments. If 

the decision is unclear, the frame is sub-divided into half the size of the original 

frame, that is, it is sub-divided into two sub-frames of 200 samples each which 

is equivalent to 25ms time duration. The energy and zero crossing measures 

from these sub-divided frames is calculated and compared with the threshold 

values to classify the subdivided frames into voiced and unvoiced classes. This 

process is repeated until all frames are classified into the two classes. 

 

Figure 2-1.Block diagram for VAD based on Zero Crossing Rate and Energy 

Measurements [11] 

2.2. LED: Linear Energy-Based VAD [12] 

In the previous method, the threshold remained as a constant through the entire 

process. This method works on the principle of updating the threshold value 

adaptively. 
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2.2.1.Full-Band Energy 

The full-band energy measure calculates the energy of the incoming frames. 

This energy, 𝐸𝑗  is given by the equation (2.3) 

𝐸𝑗 =  
1

𝑁
  𝑥2 𝑖                                                  (2.3)

𝑗𝑁

𝑖= 𝑗−1 𝑁+1

 

Where, 𝐸𝑗  is the energy of the j-th frame and if 𝑥(𝑖) is the i-th sample of speech 

and the length of the frame is N samples, then frame j, 𝑓𝑗  is represented by 

equation (2.4) as 

𝑓𝑗 =   𝑥(𝑖) 𝑖= 𝑗−1 𝑁+1
𝑗𝑁

                                                        (2.4) 

2.2.2.Implementation 

Calculating the threshold value is very important as it estimates the background 

noise. In this method, it is assumed that the initial 100ms does not contain any 

speech. Therefore, the mean energy of the initial 100ms is calculated according 

to the equation (2.5) 

𝐸𝑟 =  
1

𝑣
  𝐸𝑚 

𝑣

𝑚=0

                                                                  (2.5) 

Where, 𝐸𝑟  is the initial threshold, v is the number of frames whose individual 

size is 80 samples which is equivalent to 10ms sampled at 8 KHz frequency. 

The speech signal is divided into frames of 10ms duration at 8 KHz sampling 

frequency. This corresponds to 80 samples per frame. 

The energy of the incoming frame is calculated according to the equation (2.3) 

and compared to the estimated threshold. If the energy of the frame is greater 

than the threshold, the frame is judged as a voiced frame. Otherwise, the frame 

is considered to be an unvoiced frame and the new threshold is calculated as per 

the equation (2.6) 

𝐸𝑟,𝑛𝑒𝑤 =   1 − 𝑝 . 𝐸𝑟,𝑜𝑙𝑑 + 𝑝. 𝐸𝑠𝑖𝑙𝑒𝑛𝑐𝑒                            (2.6) 
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Where, 𝐸𝑟,𝑛𝑒𝑤  is the updated threshold value, 𝐸𝑟,𝑜𝑙𝑑  is the previous threshold 

value, 𝐸𝑠𝑖𝑙𝑒𝑛𝑐𝑒  is the energy of the recent unvoiced frame and, 0 < 𝑝 < 1. In 

this method, the coefficient p takes the value of 0.2 [13]. 

2.3. ALED: Adaptive Linear Energy-Based Detector [12] 

This method is an improvement of the previous method of linear energy-based 

detector (LED). The coefficient ‘p’ in the equation (2.6) is limited to constant 

value which is insensitive to the varying noise statistics. To overcome this 

limitation, 𝐸𝑟 , the energy threshold is computed using the second order 

statistics of the unvoiced frames. 

2.3.1.Implementation 

A buffer of ‘m’ silence frames is used in this method. When a new silence 

frame is detected, it is added to the buffer by discarding the oldest frame. The 

variance of this buffer is calculated in terms of its energy according to the 

equation (2.7) 

𝜎2 = 𝑣𝑎𝑟 𝐸𝑠𝑖𝑙𝑒𝑛𝑐𝑒                                                              (2.7) 

The background noise in the speech signal is detected by comparing the 

variance of the buffer before the addition of the new silence frame with the 

variance of the buffer after a new silence frame has been added to the buffer. If 

𝜎2
𝑜𝑙𝑑  denotes the variance of the buffer before the addition and 𝜎2

𝑛𝑒𝑤  denotes 

the buffer after the addition, a change in background as in equation (2.8) 

indicates that 

𝜎2
𝑛𝑒𝑤   >   𝜎2

𝑜𝑙𝑑                                                                     (2.8) 

Hence, a new rule is formulated to vary p in equation (2.6) by the table (2.1) 
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Table 2.1.Value of „p‟ depending on  
𝜎2

new

𝜎2
old

 [12] 

 
𝜎2

new

𝜎2
old

 ≥ 1.25  0.25 

1.25 ≥   
𝜎2

new

𝜎2
old

 ≥ 1.10 
0.20 

1.10 ≥  
𝜎2

new

𝜎2
old

 ≥ 1.0 
0.15 

1.0 ≥   
𝜎2

new

𝜎2
old

 
0.10 

 

2.4. A Pattern Recognition Approach to Voiced-Unvoiced 

Classification [5] 

In this method, the concept of pattern recognition is applied to classify the 

given speech signal into two classes which are voiced and unvoiced. This 

method employs the measurement of five different parameters. These features 

extracted from the speech signal are zero crossing count, speech energy, and 

correlation between adjacent speech samples, first predictor coefficient from 

linear predictive coding analysis and the energy in the prediction error. The five 

parameters are simple and highly effective for the classification. 

The classification of speech segment into voiced or unvoiced classes is 

achieved by computing the weighted Euclidean distance measure with the 

parameters extracted from the speech segment and assigning to class with 

minimum distance. 

2.4.1.Zero Crossing Count 

If the successive samples in the speech signal have different algebraic signs, 

then a zero crossing is said to occur. Zero crossing rate can be defined as the 

rate of occurrence of these zero crossings in a frame which is a measure of the 

frequency content of a signal. The zero crossing rate for speech is given by the 

equation (2.9) [14] and is similar to equation (2.1)  
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𝑁𝑧 =    𝑠𝑔𝑛 𝑥 𝑚  − 𝑠𝑔𝑛 𝑥 𝑚 − 1   𝑤 𝑛 − 𝑚             (2.9)

∞

𝑚= −∞

 

Where 

𝑠𝑔𝑛 𝑥 𝑛  =   
1         𝑥 𝑛 ≥ 0
−1      𝑥 𝑛 < 0

  

And  

𝑤 𝑛 =   
1

2𝑁
        0 ≤ 𝑛 ≤ 𝑁 − 1

0               𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

The energy is concentrated at low frequencies for voiced speech and for the 

unvoiced speech; the energy concentration is at the high frequencies. Thus, the 

zero crossing count, 𝑁𝑧  for voiced speech is lower and is typically in the range 

of 0-30 and for unvoiced speech, it has higher rate ranging from 10-100. The 

probability density function for the zero crossing measurement is shown in 

figure (2.2). 

 

 

Figure 2-2.Probability density function for the zero crossing measurement[5] 
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2.4.2.Log-Energy 

The log-energy, 𝐸𝑠 is defined by the equation (2.10) as 

𝐸𝑠 = 10 ∗ 𝑙𝑜𝑔10  𝜖 + 
1

𝑁
  𝑥2(𝑛)

𝑁

𝑛=1

                                (2.10) 

Where 𝜖 is a small positive constant which has a value of 10−5.  

The energy of the voiced signal is considered to be higher than the energy of the 

unvoiced signal. The distribution function of the voiced and unvoiced signal for 

the log-energy measure is shown in figure (2.3) 

 

Figure 2-3.Probability density function for the energy measure [5] 

2.4.3.Normalized Autocorrelation Coefficient 

The normalized autocorrelation coefficient, 𝐶1 gives the correlation between the 

adjacent samples of the signal which usually varies between -1 and +1. This 

value of 𝐶1 for voiced signal is close to unity because of the frequency 

concentration in the low frequencies and for unvoiced signal, it is close to zero. 

The normalized correlation coefficient at unit delay is defined by equation 

(2.11) as 

𝐶1 =  
 𝑠 𝑛 𝑠(𝑛 − 1)𝑁
𝑛=1

 ( 𝑠2(𝑛))𝑁
𝑛=1 ( 𝑠2(𝑛))𝑁

𝑛=0

                               (2.11) 
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The probability density function of the normalized autocorrelation coefficient, 

𝐶1 is shown in figure (2.4) 

 

Figure 2-4.Probability density function for the normalized autocorrelation 

coefficient [5] 

2.4.4.First Predictor Coefficient 

The first predictor coefficient of a p-pole is a number obtained from the linear 

predictive coding (LPC) analysis. Its value varies from -5 for voiced signal to 1 

for unvoiced signal. The first predictor coefficient is obtained by minimizing 

the equation (2.13). 

Figure (2.5) shows the distribution function for the first LPC coefficient 

measure. 
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Figure 2-5.Probability density function for the first LPC coefficient measure 

2.4.5.Normalized Prediction Error 

The normalized prediction error, 𝐸𝑝  is defined by the equation (2.11) 

𝐸𝑝 =  𝐸𝑠 −  10 ∗ 𝑙𝑜𝑔10  10−6 +   ∝𝑘 . ∅ 0, 𝑘 +

𝑝

𝑘=1

∅ 0,0           (2.11) 

Where 

∅ 𝑖, 𝑘 =  
1

𝑁
 𝑠 𝑛 − 𝑖 𝑠 𝑛 − 𝑘                                      (2.12)

𝑁

𝑛=1

 

Equation (2.12) is the (i, k) term of the covariance matrix, 𝐸𝑠 is the log-energy 

defined in equation (2.10) and ∝𝑘  is the predictor coefficient obtained by 

minimizing equation (2.13) 

𝐸 =  
1

𝑁
   𝑠 𝑛 +  ∝𝑘 𝑠(𝑛 − 𝑘)

𝑝

𝑘=1

 

2𝑁

𝑛=1

                            (2.13) 

The normalized prediction error gives the measure of the non-uniformity of the 

spectrum. The prediction error is higher for voiced signal compared to the 
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unvoiced signal. The parameter 𝐸𝑝  varies between 0 and 40 dB. Figure (2.6) 

shows the distribution function of the prediction error parameter. 

 

Figure 2-6.Probability density function for LPC error measurement [5] 

2.4.6.Distance Computation 

A training set is created by manually marking a clean speech recorded in a quiet 

environment for the speech periods and segmenting the signal into regions of 

voiced and unvoiced signal. These segments each are then divided into blocks 

of size 10ms duration and the five measurements as explained in section 2.4.1 

are calculated for each block and saved in a test file.  

Let 𝑥𝑖(𝑛) be the measurement vector for the nth block belonging to class i (i = 

1 for voiced decision and 2 for unvoiced decision) and 𝑁𝑖  be the total number of 

blocks in class i, we have from equations (2.14) and (2.15), the mean vector 𝒎𝑖  

and the covariance matrix 𝑾𝑖  for each class of i.  

𝒎𝑖 =  
1

𝑁𝑖
 𝑥𝑖(𝑛)

𝑁𝑖

𝑛=1

                                              (2.14) 

𝑾𝑖 =  
1

𝑁𝑖
 𝑥𝑖 𝑛 

𝑁𝑖

𝑛=1

𝑥𝑖
𝑡 𝑛 − 𝒎𝑖𝒎𝑖

𝑡                             (2.15) 
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The distance measure 𝑑𝑖  is therefore formulated using the equation (2.16) 

𝑑𝑖 =  𝒙 −𝒎𝑖 
𝑡𝑾𝑖

−1 𝒙 −𝒎𝑖                                  (2.16) 

Where 𝒙 is the measurement vector for the incoming speech blocks which are 

to be classified into voiced and unvoiced classes.  

2.4.7.Implementation 

The practical implementation of the algorithm is shown with the help of a block 

diagram in figure (2.7) 

 

Figure 2-7.Block diagram for VAD based on pattern recognition approach [5] 

A low pass filter with cut off frequency 4 KHz sampling frequency of 10 KHz 

is applied at the beginning of the process. The output is then high pass filtered 

at 200 Hz to remove any dc or low-frequency hum from the signal. The signal 

is now divided into blocks of 10ms duration with 100 samples each.  

Following the filtering, the five measurements are computed on each block of 

size 10ms duration and stored in a vector x. This vector is used to estimate the 

distances for each class with their respective mean vectors and covariance 
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matrices obtained from equations (2.14) and (2.15). The distance is computed 

by equation (2.16) and the blocks are classified into voiced and unvoiced 

classes using minimum probability-of-error decision. Based on the distance 

measure, 𝑑𝑖  the blocks are classified into class i such that the distance is 

minimized. This process is continued till all the blocks are classified into voiced 

and unvoiced classes. 

2.5. VAD Based on Statistical Measures [15], [16] 

This method describes a statistical method which makes use of signal to noise 

ratio measure for the detection of speech segment in the input signal. The 

method incorporates estimation of low-variance spectrum and adaptive 

threshold mechanism for the detection of voiced segments in the input signal. 

The expected noise power spectral density and the variance of „signal to noise 

ratio‟ measure are estimated from the non-speech periods. The adaptive 

threshold computation improves the performance of the VAD. The method is 

described in detail in the following section. 

2.5.1.Signal-to-Noise Measure 

Consider a signal corrupted by additive noise which is modeled using equation 

(2.17) as 

𝑥𝑘 𝑛 =  𝑠𝑘 𝑛 + 𝑣𝑘 𝑛                                                 (2.17) 

where 𝑠𝑘 𝑛  is the clean speech and 𝑣𝑘 𝑛  is the additive noise of the kth 

frame.  

It is assumed that speech and noise are independent and that the noise is long-

term stationary and the speech is short-term stationary. 

Spectrum estimation techniques are the common methods to analyze the signal. 

As it is known that periodogram is considered as an inconsistent spectral 

estimator, a low-variance spectrum estimation technique is used in this method 

to evaluate the spectral content of the signal. The Welch method of overlapping 

windows was used to generate reduced variance, reduces resolution power 

spectral density (PSD) estimate, 𝑃𝑥𝑥 ,𝑘(𝑓𝑙). M sub-frames overlapped by 50% 

and each sub-frame of length L are windowed with a hanning window. 
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The signal-to-noise ratio (SNR) measure is defined by equation (2.18) 

𝜓𝑘 𝑓𝑙 =  
𝑃𝑥𝑥 ,𝑘 𝑓𝑙 

𝑃 𝑣𝑣 𝑓𝑙 
−  1                                               (2.18) 

Where 𝑃 𝑣𝑣 𝑓𝑙  is the expected value of the noise PSD and 𝑃𝑥𝑥 ,𝑘 𝑓𝑙  is the PSD 

of the current frame k for a particular spectral bin 𝑓𝑙 . 

𝑃 𝑣𝑣 𝑓𝑙 =  
1

𝐾
  𝑃𝑥𝑥 ,𝑘 𝑓𝑙                                          (2.19)

𝐾−1

𝑘=0

 

Equation (2.19) gives the expected value of the noise PSD which is the sample 

mean calculated over an initial period of non-speech activity and k is the total 

number of frames during the initial period of non-speech activity. 

For the periods of non-speech activity, when x=v, expected value of SNR 

measure given by equation (2.18) is modified to equation (2.20)  

𝜓𝑘 𝑓𝑙 =  
𝑃𝑣𝑣,𝑘 𝑓𝑙 

𝑃 𝑣𝑣 𝑓𝑙 
−  1                                              (2.20) 

2.5.2.Variance of SNR Measure 

The variance of SNR measure is determined for the non-speech activity and is 

given by the equation (2.21) 

𝜎𝑣,𝑘
2 = 𝐸 𝜓𝑘

2 𝑓𝑙                                                           (2.21) 

Where 𝜎𝑣,𝑘
2 , is the variance of SNR measure during non-speech activity and is 

estimated by calculating the average square of the SNR. 

2.5.3.Threshold Adaptation and Decision 

For the decision process, two hypotheses, null and alternative hypotheses are 

considered. The null and alternative hypotheses represent the non-speech and 

speech cases respectively. They are represented as follows 

𝐻0: 𝜓𝑘 𝑓𝑙 =  
𝑃𝑣𝑣,𝑘 𝑓𝑙 

𝑃 𝑣𝑣 𝑓𝑙 
−  1 
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                      𝐻1: 𝜓𝑘 𝑓𝑙 =  
𝑃𝑣𝑣,𝑘 𝑓𝑙 + 𝑃𝑠𝑠,𝑘 𝑓𝑙 

𝑃 𝑣𝑣 𝑓𝑙 
−  1 

Where 𝐻0 and 𝐻1 represent the null and alternative hypotheses and 𝑃𝑠𝑠,𝑘 𝑓𝑙  is a 

PSD estimate of the speech in the 𝑓𝑙
𝑡𝑕

 spectral bin. 

The threshold 𝜂𝑘
′(𝑓𝑙) is determined from the noise statistics and false-alarm 

probability by the equation (2.22) 

𝜂𝑘
′ 𝑓𝑙 =   2𝜎𝑣,𝑘

2 𝑓𝑙 . 𝑒𝑟𝑓𝑐
−1 2𝑃𝐹𝐴                                (2.22) 

Where 𝜎𝑣,𝑘
2 𝑓𝑙 , is the variance of the SNR measure during non-speech activity 

in the 𝑓𝑙
𝑡𝑕

 spectral bin, 𝑃𝐹𝐴  is the probability of false alarm and 𝑒𝑟𝑓𝑐(𝑢) is the 

complementary error function [18]. 

The divided frames are classified into speech and non-speech classes based on 

the comparison between the average SNR and average threshold according to 

the equation (2.23) 

1

𝐿
 𝜓𝑘 𝑓𝑙 

𝐿−1

𝑓𝑙=0

 
>
<
𝐻1

𝐻0
 
1

𝐿
 𝜂𝑘

′ 𝑓𝑙 

𝐿−1

𝑓𝑙=0

                                   (2.23) 

If the average SNR is greater than or equal to the average threshold, 𝐻1 is 

decided. Otherwise, 𝐻0 is decided. 

2.5.4.Implementation 

The method is described by the block diagram shown in figure 2.8. 
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Figure 2-8.Block diagram for the VAD method based on statistical measures 

The procedure starts by dividing the input signal into frames of 20ms time 

duration (160 samples, sampled at 8 KHz) with 50% overlap between the 

frames. Welch method of overlapping sub-frames of length L equal to 16 

samples is used. The frame results in M=19 overlapping sub-frames. Following 

the process of dividing frames, SNR 𝜓𝑘 𝑓𝑙  is calculated using the equations 
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(2.18) and (2.20). The short exponential average over time for the SNR 𝜓𝑘 𝑓𝑙  

is calculated according to the equation (2.24) and compared to the threshold, 𝜂′ . 

 𝜓 𝑘 𝑓𝑙 =   1 −∝𝜓𝑘 𝑓𝑙  𝜓𝑘 𝑓𝑙 +∝𝜓𝑘 𝑓𝑙 . 𝜓
 
𝑘−1 𝑓𝑙            (2.24) 

∝𝜓𝑘 𝑓𝑙 =   
∝𝐶,𝜓𝑘 𝑓𝑙 , 𝜓 𝑘 𝑓𝑙  ≤  𝜓 𝑘−1 𝑓𝑙 

          0,               𝜓 𝑘 𝑓𝑙  >  𝜓 𝑘−1 𝑓𝑙  
  

Where ∝𝜓𝑘 𝑓𝑙  is the averaging coefficient and ∝𝐶,𝜓𝑘 𝑓𝑙  is a constant value and 

is given in table (2.2). 

The threshold 𝜂𝑘
′ 𝑓𝑙  is found by calculating the variance of SNR measure 

𝜎𝑣,𝑘
2 𝑓𝑙  for non-speech periods and is exponentially averaged over time 

according to the equation (2.25). The threshold 𝜂𝑘
′ 𝑓𝑙  is calculated from the 

equation (2.22) and is exponentially averaged over time according to equation 

(2.26). 

𝜎 𝑣,𝑘
2 𝑓𝑙 =   1 −∝𝜎𝑣2 𝜎𝑣,𝑘

2 𝑓𝑙 +∝𝜎𝑣2 . 𝜎 𝑣,𝑘−1
2 𝑓𝑙            (2.25) 

𝜂′ 
𝑘
 𝑓𝑙 =   1 −∝𝜂 ′  𝜂𝑘

′ 𝑓𝑙 +∝𝜂 ′ . 𝜂
′ 
𝑘−1

 𝑓𝑙                      (2.26) 

 

Table 2.2 Parameters for VAD implementation [15] 

Measure Value 

𝜼𝒌
′ 𝒇𝒍 𝑴𝑨𝑿 1.5 

𝜼𝒌
′ 𝒇𝒍 𝑴𝑰𝑵 0.45 

𝑷 𝒗𝒗,𝑴𝑰𝑵 𝒇𝒍  0.001 

∝𝑪,𝝍𝒌 𝒇𝒍  0.75 

∝𝑷𝒗𝒗 0.999 

∝𝝈𝒗𝟐 0.35 

∝𝜼′  0.75 

L 16 

M 19 

𝑷𝑭𝑨 5% 
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The smoothing coefficients, ∝𝜎𝑣2 , ∝𝜂 ′ , the constant for probability of false 

alarm 𝑃𝐹𝐴 , the upper limit 𝜂𝑘
′ 𝑓𝑙 𝑀𝐴𝑋 , lower limit 𝜂𝑘

′ 𝑓𝑙 𝑀𝐼𝑁  for 𝜂𝑘
′ 𝑓𝑙 , 

𝑃 𝑣𝑣,𝑀𝐼𝑁 𝑓𝑙  and ∝𝑃𝑣𝑣  are presented in table (2.2). The arithmetic mean over 

frequency of threshold is calculated and compared to the SNR and based on the 

decision rule given in equation (2.23) the frames are classified into speech and 

non-speech classes.  

The limiting of the threshold is applied to limit the estimated variance of the 

background noise effectively. The upper limit trades the false rejection for false 

alarms. The limit on the expected noise power estimate is applied to avoid the 

SNR measure tending towards infinity.  
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3. EVALUATION OF METHODS 

 

3.1. Objective Parameters 

The performance of a VAD method is evaluated using the objective parameters. 

For measuring the amount of clipping and noise detected as speech, the output 

from the VAD methods are compared to the ideal VAD decisions. The ideal 

VAD decisions are obtained by manually marking a clean speech recorded in a 

quiet environment for speech and non-speech periods. VADs are evaluated 

using four traditional objective parameters [1], [15], [18]. 

3.1.1.Front End Clipping (FEC) 

FEC occurs when speech is misclassified as noise while passing from noise into 

speech activity. FEC is obtained using the equation (3.1).  

% 𝐹𝐸𝐶 =  
𝑁𝐹

𝑁𝑠𝑝𝑒𝑒𝑐 𝑕
 × 100                                           (3.1) 

Where 𝑁𝐹 , is the number of samples misclassified as noise when passing from 

noise to speech activity and 𝑁𝑠𝑝𝑒𝑒𝑐 𝑕  is total number of samples of speech from 

an ideal VAD. 

3.1.2.Mid-Speech Clipping (MSC) 

Mid-speech clipping occurs when speech is misclassified as noise during an 

utterance. The MSC measure in percentage is obtained from the equation (3.2) 

% 𝑀𝑆𝐶 =  
𝑁𝑀

𝑁𝑠𝑝𝑒𝑒𝑐 𝑕
 × 100                                           (3.2) 

Where 𝑁𝑀 , is the number of samples misclassified as noise during an utterance. 

3.1.3.Over Hang (OVER)  

OVER is the measure of noise interpreted as speech while passing from speech 

to non-speech or noise period. OVER is measured using the equation (3.3) 
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% 𝑂𝑉𝐸𝑅 =  
𝑁𝑂

𝑁𝑠𝑖𝑙𝑒𝑛𝑐𝑒
 × 100                                           (3.3) 

Where 𝑁𝑂 , is the number of samples interpreted as speech while passing from 

speech to silence period and 𝑁𝑠𝑖𝑙𝑒𝑛𝑐𝑒  is the total number of samples from 

silence period of an ideal VAD. 

3.1.4.Noise Detected as Speech (NDS) 

This is a measure of noise interpreted as speech within a silence period. NDS is 

calculated by the equation (3.4) 

% 𝑁𝐷𝑆 =  
𝑁𝑁

𝑁𝑠𝑖𝑙𝑒𝑛𝑐𝑒
 × 100                                           (3.4) 

Where 𝑁𝑁  refers to the number of samples interpreted as speech while in 

silence period.  

The four objective parameters are illustrated in figure (3.1) 

 

Figure 3-1.Objective Parameters [1] 

FEC and MSC collectively give the measure of the amount of clipping 

introduced in the signal. OVER and NDS parameters indicate false alarms. The 
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clipping errors (FEC and MSC) degrade the speech quality and reduce speech 

intelligibility. The insertion errors (OVER and NDS) reduce the effectiveness of 

the VAD. Therefore, it is of vital to reduce clipping errors at all cost for better 

speech intelligibility. 

3.2. NOIZEUS: A Noisy Speech Corpus [19],[20] 

The noisy speech corpus (NOIZEUS) database was originally developed to 

facilitate research groups to compare different speech enhancement algorithms. 

The database consists of 30 IEEE sentences spoken by 3 male and female 

speakers corrupted by different real-world noises at different SNRs. The noise 

in the speech corpus was taken from AURORA database [21] . The different 

noise environments with SNRs 0dB, 5dB, 10dB and 15dB are train noise, 

babble noise, car noise, exhibition hall noise, restaurant noise, street noise, 

airport noise and train station noise. These speech sentences from IEEE 

database [22] were recorded in sound proof booth and noise was artificially 

added to the speech signal. The sentences were downsampled to 8 KHz from 25 

KHz. 

For evaluating various VAD algorithms, NOIZEUS database was used. The test 

database included speech signals recorded in quiet environment by a male and 

female speaker. Noise from AURORA database was taken and added 

artificially to these speech signals. Speech signal with four types of additive 

noises was used for the analysis and evaluation purpose. The different additive 

noises are airport noise, babble noise, restaurant noise and train noise. The 

database for four SNR values 0dB, 5dB, 10dB and 15dB was used. 
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4. RESULTS AND ANALYSIS 

The five VAD algorithms described in chapter 2 were implemented in 

MATLAB version 7.6.324 (R2008a). The VAD decisions for each method were 

computed and objective parameters (FEC, MSC, OVER, NDS) were obtained. 

The VAD methods were tested in four different noise environments with SNR 

values 0dB, 5dB, 10dB, and 15dB for airport noise, babble noise, restaurant 

noise and train noise. The results are shown in the following sections for each 

method for male and female speakers. 

4.1. VAD Based on Zero Crossing Rate and Energy Measure 

This method works on the principle of extracting energy and zero crossing rate 

features from the input speech signal and comparing them to the threshold to 

classify the frames into voiced and unvoiced classes. Usually voiced segments 

have high energy and low zero crossing rate and unvoiced segments have low 

energy and high zero crossing rate. This is shown in the figure 4.1 for a male 

speaker.  

 

Figure 4-1.Energy and ZCR Measurements of VAD based on Energy and Zero 

Crossing Rate 
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It can be seen from the figure that for voiced segments, the energy measurement 

is high and zero crossing rate measure is low. The energy measurement is low 

and zero crossing count is high for unvoiced segments.  

The objective parameters for VAD method based on ZCR and energy measure 

for male and female speaker are presented in table (4.1) below. 

Table 4.1 Objective parameters for VAD based on Zero Crossing Rate and Energy Measure 

Noise Environment 
VAD Based on Zero Crossing Rate and Energy 

 Male Speaker Female Speaker 

Noise SNR(db) FEC MSC OVER NDS FEC MSC OVER NDS 

Airport 15 0.685 11.4123 29.8503 7.5795 22.2726 22.6113 0 19.2257 

Airport 10 4.3871 37.7715 5.1154 15.0655 1.022 18.5172 20.5251 28.8783 

Airport 5 8.4682 39.1852 2.7137 5.0218 0.768 31.2167 6.3644 29.939 

Airport 0 1.5523 43.1351 12.8197 22.645 4.3965 45.2225 14.9562 24.5823 

Babble 15 0 20.8279 9.8877 10.0125 5.9627 19.2368 13.9486 31.0263 

Babble 10 2.0624 22.3 12.2583 30.131 14.9129 33.7506 0 15.0093 

Babble 5 5.3491 30.8337 2.8384 13.9426 4.6384 50.9132 12.8348 12.8083 

Babble 0 4.9701 29.398 0.811 45.2277 4.4569 58.7325 13.8425 8.5388 

Restaurant 15 2.5361 24.8652 0 5.0218 0.6531 17.0235 23.1238 22.3813 

Restaurant 10 7.0179 37.7423 2.7137 2.5265 0.768 15.5842 16.07 38.4513 

Restaurant 5 2.8349 24.9016 0 16.3755 8.1398 39.3747 10.183 18.1649 

Restaurant 0 0 16.7978 12.8197 25.1716 25.0605 47.1093 1.1138 14.9828 

Train 15 0.5976 9.1167 0 27.6669 4.8803 17.5254 9.5996 14.9828 

Train 10 2.1353 31.3001 2.7137 25.0468 2.165 19.255 6.3644 19.2522 

Train 5 11.9662 32.4807 0 10.0437 1.0099 27.298 3.2352 20.3394 

Train 0 4.2851 45.6056 0 7.5172 5.479 40.3846 0 30.9732 

 

FEC and MSC collectively give the amount of clipping and are called as 

clipping errors (FEC+MSC). OVER and NDS measures give the false alarm 

percentages in the detected voiced and unvoiced segments. These are called as 

insertion errors together (OVER+NDS). Although the FEC measure is low, the 

amount of MSC measured in the detection is very high which results in 

degradation of speech quality and reduction of speech intelligibility. The VAD 

works well in restaurant noise environments for both male and female speakers 

compared to other environments. The VAD performance in babble noise 

environment is very poor. The method performs well under noise conditions 
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below 10dB SNR value. The insertion error for this method is very less 

compared to the clipping errors. FEC measure for the male speaker increases 

with decrease in SNR value with low values and for female speaker, this 

measure varies between high and low.  MSC measure is high for both male and 

female speakers under all noise environments. NDS measure is high for female 

speaker and less for male speaker. The overall performance of the VAD based 

on zero crossing rate and energy measure is very poor as it introduces a lot of 

clipping errors which reduces the speech quality. 

4.2. LED: Linear Energy-Based VAD 

LED method extracts energy feature from the input signal and compares with a 

threshold computed during initial period of the input signal. If the energy is 

higher than the threshold, the incoming frame is classified into voiced frame and 

if the energy is lower than the threshold, the frame is classified into unvoiced 

frame. The energy for voiced frame is high and for unvoiced frame, it is low. 

Figure 4.2 show the energy measurement for the LED method for a male 

speaker. 

 

Figure 4-2.Energy Measurement for LED method 
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The objective parameters for Linear Energy-Based VAD (LED) are tabulated in 

the table 4.2. 

The results from table 4.2 indicate that the VAD has less percentage of average 

clipping error. However, the average insertion error is quite high in this method 

which would reduce the effectiveness of the method. Under babble noise 

environment, the VAD has least percentage of clipping errors and highest 

percentage of insertion errors. For babble noise, restaurant noise and train 

environments, the clipping errors are less and insertion errors are high for 

female speaker compared to the male speaker. The VAD performs well under 

train noise environment.  FEC measure for both speakers is lesser than the MSC 

after the detection of voiced and unvoiced segments. The false alarms in the 

detected speech are high for this method. The VAD maintains the speech 

intelligibility but reduces the effectiveness of the VAD. 

Table 4.2 Objective parameters for LED: Linear Energy-Based VAD 

Noise Environment 
LED: Linear Energy-Based VAD 

 Male Speaker Female Speaker 

Noise SNR(db) FEC MSC OVER NDS FEC MSC OVER NDS 

Airport 15 0.102 4.1175 42.4517 7.5172 5.479 14.5743 2.1215 17.1307 

Airport 10 0.6049 20.4708 7.0493 22.5515 0.1693 20.3919 15.8048 17.1573 

Airport 5 3.2211 26.8838 0.2183 10.1061 2.1045 11.6715 31.7157 12.7818 

Airport 0 2.5361 28.6984 0 22.6762 12.1372 23.3551 26.6773 8.5919 

Babble 15 0.2842 0.5903 27.4797 37.617 2.4734 0 66.5341 2.148 

Babble 10 0.2842 11.1208 17.4984 22.6762 1.022 14.5682 10.7133 23.4155 

Babble 5 0.3862 15.2237 15.4398 10.1061 8.7506 17.0114 0.5834 36.1973 

Babble 0 3.2211 24.6028 4.554 27.6669 0.6531 8.2729 45.4787 23.389 

Restaurant 15 0.2842 14.6261 19.9938 20.0561 1.5058 8.2487 30.655 10.6603 

Restaurant 10 0.102 12.2941 0.2183 20.0873 0.0544 12.6149 49.7746 21.2941 

Restaurant 5 1.0858 18.7582 17.0306 5.053 1.2518 7.7528 52.9303 2.148 

Restaurant 0 3.1992 10.5451 59.7006 15.0343 0.2238 28.6829 30.0716 15.0093 

Train 15 1.9531 7.6301 0 2.5265 1.9896 4.3783 20.8168 2.148 

Train 10 0.3862 16.9946 0 7.5483 0 23.2886 11.9862 19.1726 

Train 5 3.8041 7.0034 24.5165 17.592 0.0544 4.8803 18.987 14.9828 

Train 0 4.2851 24.5445 9.5446 17.5608 9.7303 4.3965 48.4222 6.4439 
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4.3. ALED: Adaptive Linear Energy-Based Detector 

ALED method is an improvement of the LED method. In this method, the 

threshold is updated adaptively. The value of p is varied adaptively according to 

the table 4.1. The energy measurement for a female speaker is shown in figure 

4.3. This method works on the same principle of LED. 

 

Figure 4-3.Energy Measurement of ALED Method 

The objective parameters for Adaptive Linear Energy-Based Detector are 

presented in table below. 

The VAD works reasonable well for SNR values ranging from 5dB to 15dB. 

The results from table 4.3 indicate that the FEC and MSC measures increase 

with decrease in the SNR value. The VAD has lower FEC and MSC measures 

and higher OVER and NDS measures. The VAD shows good performance in 

train noise environment which has both less percentage of clipping and insertion 

errors.  This method is the improvement of the previous method. In this method, 

the amount is insertion errors are reduced with adaptive threshold. However, the 

amount of clipping errors is slightly higher in babble noise and train noise 
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environment compared to the previous method. The method improves on the 

effectiveness of VAD. 

Table 4.3 Objective parameters for ALED: Adaptive Linear Energy-Based Detector 

Noise Environment 
ALED: Adaptive Linear Energy-Based Detector 

 Male Speaker Female Speaker 

Noise SNR(db) FEC MSC OVER NDS FEC MSC OVER NDS 

Airport 15 0.102 4.1175 42.4517 7.5172 1.6207 15.5358 15.9639 14.9828 

Airport 10 0.6049 21.6295 7.0493 22.5515 0.1693 17.9669 15.8048 12.8878 

Airport 5 4.3871 16.9582 0.2183 7.5795 3.5559 11.1756 31.7157 12.7818 

Airport 0 2.5361 28.1154 0 20.1809 12.1372 22.3754 28.7987 8.5919 

Babble 15 0.2842 1.1806 27.4797 35.1528 2.4734 0.4898 66.5341 2.148 

Babble 10 0.2842 11.1208 17.4984 22.6762 1.022 20.8817 3.7656 27.685 

Babble 5 0.3862 16.9655 15.4398 10.1061 5.0617 22.3452 0.5834 23.4421 

Babble 0 3.2211 24.6028 2.0586 20.1497 0.6531 8.2729 41.2357 25.537 

Restaurant 15 0.2842 14.6261 19.9938 17.5296 1.5058 8.2487 30.655 10.6603 

Restaurant 10 0.102 12.2941 0.2183 17.5608 0.0544 13.1047 49.7746 21.2941 

Restaurant 5 1.0858 21.0902 17.0306 7.5795 2.2194 8.2426 33.0416 8.5388 

Restaurant 0 3.1992 12.3087 52.2146 20.0561 1.1913 28.1991 30.0716 10.7133 

Train 15 1.9531 7.6301 0 5.053 1.9896 4.3783 20.8168 2.148 

Train 10 0.3862 16.98 0 12.5702 0.5987 23.7724 11.9862 17.0247 

Train 5 3.8041 9.3572 24.5165 17.592 0.0544 1.9533 50.0663 6.4174 

Train 0 4.2851 28.0426 9.5446 17.5608 9.7303 4.3965 48.4222 6.4439 

 

4.4. A Pattern Recognition Approach to Voiced-Unvoiced 

Classification 

In this method, parameters such as zero crossing count,𝑁𝑧  log-energy, 𝐸𝑠 

normalized autocorrelation coefficient, 𝐶1 first linear predictor coefficient and 

normalized prediction error are computed and using the minimum weighted 

Euclidean distance, the frames are classified into voiced and unvoiced classes.   

For voiced segments, the zero crossing count is low, log-energy measurement is 

high, normalized autocorrelation coefficient is close to unity and first predictor 

coefficient value is around -5 and for the unvoiced segments, the zero crossing 

count is high, log-energy measurement is low, normalized autocorrelation 

coefficient is close to zero and first predictor coefficient value is around 1. 

These measurements are shown for a female speaker in figure 4.4. 
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Figure 4-4.Extracted Features from Speech Signal using VAD based on Pattern 

Recognition Approach 

The objective parameters for the VAD based on pattern recognition approach 

are presented in table 4.4. 

The results obtained from table 4.4 indicate that the method performs very well 

to maintain good speech intelligibility. The FEC+MSC measure is very low in 

this method. The amount of clipping errors is low which makes this method a 

good VAD. This VAD method performs well in airport noise and babble noise 

environments. In airport noise environment, the amount of insertion error is 

slightly higher than in babble noise environment. The method provides good 

results for SNR values ranging from 5dB and higher.  
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Table 4.4 Objective parameters for Pattern Recognition Approach to Voiced-Unvoiced 

Classification 

Noise Environment 
A Pattern Recognition Approach to Voiced-Unvoiced Classification 

 Male Speaker Female Speaker 

Noise SNR(db) FEC MSC OVER NDS FEC MSC OVER NDS 

Airport 15 1.5523 2.3612 14.8784 7.5795 1.3062 4.8863 13.3652 36.3034 

Airport 10 0.102 6.4641 12.0399 37.7105 0 10.2141 18.4566 23.4421 

Airport 5 2.7183 18.7946 14.8784 30.2246 0 8.8111 29.5943 31.9809 

Airport 0 0 14.7136 12.6949 37.617 0 29.7412 21.9305 25.6165 

Babble 15 0 4.7078 14.8784 25.1716 0.2238 13.1592 26.0408 23.4951 

Babble 10 0 6.4786 7.174 20.0873 0 6.3437 16.5739 36.3034 

Babble 5 0 8.8398 4.8971 37.5858 0 15.6205 3.2352 40.5198 

Babble 0 0.8672 25.8199 7.7043 22.5827 2.9451 22.8592 12.2514 17.1042 

Restaurant 15 0.102 6.4568 12.1647 40.1435 0.8406 7.8133 4.349 36.2768 

Restaurant 10 0.685 7.0762 2.277 30.1934 0.1693 12.1976 7.5842 29.8329 

Restaurant 5 0.5028 11.1937 0 30.131 2.7576 11.7017 14.4259 29.8595 

Restaurant 0 2.1353 18.2262 4.7723 30.131 0.7075 27.812 14.4259 34.1554 

Train 15 2.5361 13.4601 5.3337 5.053 1.5058 10.716 13.9486 8.5919 

Train 10 0.102 8.8107 5.3337 25.1716 4.5114 14.5985 0 25.6696 

Train 5 1.5523 20.5582 14.5352 15.0655 2.2738 14.1388 5.3567 19.2257 

Train 0 0.5028 28.2247 5.3337 30.131 5.4245 29.2271 1.6441 36.2768 

 

4.4.1.VAD based on Statistical Measures 

This method works on the principal of calculating the Signal-to-Noise Ratio 

(SNR) measure and comparing it with an optimal threshold value using 

estimated noise statistics. If the SNR measure is higher than the threshold, then 

the frame is classified into voiced class. If it is lower than the threshold, then it 

is classified into unvoiced class. The SNR measure is high for voiced segments 

and low for unvoiced segments. This is shown in figure 4.5 for a male speaker.  
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Figure 4-5.SNR Measure of VAD based on Statistical Measures 

The objective parameters for VAD based on statistical measures are presented in 

table 4.5 for four different noise environments.  

The results from the table indicate that the VAD based on statistical measures 

performs well in restaurant noise environment when compared to other 

environments. The method performs better for SNR value above 10dB. The 

FEC measure is high in this method and MSC measure is lower. Most of the 

insertion error is constituted by OVER parameter. The amount of clipping error 

introduced in this method is high as the SNR value decreases below 10dB. The 

VAD has lower insertion error compared with the other methods. The VAD 

exhibited poor performance in train environment with high clipping errors 

which leads to reduction in speech quality. However, the insertion error was 

found to be lower than in other environments.  
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Table 4.5 Objective parameters for VAD based on Statistical Measures 

Noise Environment 
VAD Based on Statistical Measures 

 Male Speaker Female Speaker 

Noise SNR(db) FEC MSC OVER NDS FEC MSC OVER NDS 

Airport 15 8.7669 16.3460 12.6949 0 10.0085 0 15.9905 0 

Airport 10 8.7669 18.6780 32.1273 0 10.9761 17.4226 15.9905 0 

Airport 5 0 9.3354 32.6887 0 24.0445 0 46.5659 0 

Airport 0 0 10.5014 57.2052 0 8.4482 2.9088 50.3050 0 

Babble 15 1.8510 12.8407 12.9445 0 7.5411 5.8116 46.5659 0 

Babble 10 25.8563 3.5053 51.8715 0 3.8582 0 47.3880 0 

Babble 5 0.6850 19.8440 37.4610 0 12.3186 7.7528 30.6285 0 

Babble 0 3.0171 15.1727 22.4891 0 19.5090 10.6555 23.4421 0 

Restaurant 15 0 14.0140 57.2052 0 22.6415 15.4874 19.2257 21.2411 

Restaurant 10 2.1353 9.3354 37.4610 0 6.7610 0 35.6669 0 

Restaurant 5 0 23.3348 42.2333 0 10.0085 0 15.9905 0 

Restaurant 0 17.7744 3.5053 57.2052 0 1.6207 0 50.3050 0 

Train 15 27.7073 3.5053 0 0 36.3026 0 3.2352 0 

Train 10 28.8733 7.0106 7.6107 0 38.2378 0 12.2514 0 

Train 5 27.7073 3.5053 0 0 31.4647 0 0 0 

Train 0 31.2054 4.6713 0 0 42.1081 0 0 0 

 

4.5. Summary 

The results of VADs have been presented in section 4.1 through 4.5. The results 

indicate that the performance of VADs improves as SNR value increases. 

Among all the methods analyzed, VAD based on energy measurement and zero 

crossing rate has poor performance as it introduces great amount of clipping 

error and insertion error. The total percentage of correct classifications is very 

low. On the other hand, VAD based on pattern recognition approach exhibits 

very good performance and it maintains good signal quality. LED and ALED 

methods have high insertion errors, thereby, making the methods less effective. 

VAD based on statistical measure works best for SNR values above 10dB.  

Some of the errors in the measurements are due to manual mismarking of the 

test signals. The limiting factors on 𝜂𝑘
′ 𝑓𝑙  and 𝑃 𝑣𝑣, 𝑓𝑙  contributes to the total 

error in VAD based on statistical measures.  
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5. CONCLUSION 

This thesis has been a survey of existing VAD methods. The various VAD 

methods were investigated for this purpose and five VAD methods were 

selected. These methods were studied and implemented in MATLAB. The 

implemented methods were analyzed based on the objective parameters 

calculated under four different noise environments for a male and a female 

speaker. The five methods selected were based on threshold calculation.  The 

results from VAD based on energy and zero crossing measurement displayed 

poor performance and VAD based on pattern recognition approach exhibited 

very good performance. The VAD methods work well for SNR values above 

10dB. The Clipping errors (FEC + MSC), were minimum in VAD based on 

pattern recognition approach and maximum in VAD based on energy and zero 

crossing measurement. The insertion errors (NDS + OVER) was found to be 

low in VAD based on statistical measures and high in LED method. 
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