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Conv-TasNet: Surpassing Ideal Time–Frequency
Magnitude Masking for Speech Separation

Yi Luo and Nima Mesgarani

Abstract—Single-channel, speaker-independent speech separa-
tion methods have recently seen great progress. However, the ac-
curacy, latency, and computational cost of such methods remain
insufficient. The majority of the previous methods have formulated
the separation problem through the time–frequency representation
of the mixed signal, which has several drawbacks, including the
decoupling of the phase and magnitude of the signal, the subopti-
mality of time–frequency representation for speech separation, and
the long latency in calculating the spectrograms. To address these
shortcomings, we propose a fully convolutional time-domain au-
dio separation network (Conv-TasNet), a deep learning framework
for end-to-end time-domain speech separation. Conv-TasNet uses
a linear encoder to generate a representation of the speech wave-
form optimized for separating individual speakers. Speaker sepa-
ration is achieved by applying a set of weighting functions (masks)
to the encoder output. The modified encoder representations are
then inverted back to the waveforms using a linear decoder. The
masks are found using a temporal convolutional network consisting
of stacked one-dimensional dilated convolutional blocks, which al-
lows the network to model the long-term dependencies of the speech
signal while maintaining a small model size. The proposed Conv-
TasNet system significantly outperforms previous time–frequency
masking methods in separating two- and three-speaker mixtures.
Additionally, Conv-TasNet surpasses several ideal time–frequency
magnitude masks in two-speaker speech separation as evaluated by
both objective distortion measures and subjective quality assess-
ment by human listeners. Finally, Conv-TasNet has a significantly
smaller model size and a shorter minimum latency, making it a
suitable solution for both offline and real-time speech separation
applications. This study, therefore, represents a major step toward
the realization of speech separation systems for real-world speech
processing technologies.

Index Terms—Source separation, single-channel, time-domain,
deep learning, real-time.

I. INTRODUCTION

ROBUST speech processing in real-world acoustic envi-
ronments often requires automatic speech separation. Be-

cause of the importance of this research topic for speech pro-
cessing technologies, numerous methods have been proposed
for solving this problem. However, the accuracy of speech sep-
aration, particularly for new speakers, remains inadequate.
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Most previous speech separation approaches have been for-
mulated in the time-frequency (T-F, or spectrogram) representa-
tion of the mixture signal, which is estimated from the waveform
using the short-time Fourier transform (STFT) [1]. Speech sep-
aration methods in the T-F domain aim to approximate the clean
spectrogram of the individual sources from the mixture spectro-
gram. This process can be performed by directly approximating
the spectrogram representation of each source from the mixture
using nonlinear regression techniques, where the clean source
spectrograms are used as the training target [2]–[4]. Alterna-
tively, a weighting function (mask) can be estimated for each
source to multiply each T-F bin in the mixture spectrogram to
recover the individual sources. In recent years, deep learning
has greatly advanced the performance of time-frequency mask-
ing methods by increasing the accuracy of the mask estimation
[5]–[12]. In both the direct method and the mask estimation
method, the waveform of each source is calculated using the
inverse short-time Fourier transform (iSTFT) of the estimated
magnitude spectrogram of each source together with either the
original or the modified phase of the mixture sound.

While time-frequency masking remains the most commonly
used method for speech separation, this method has several
shortcomings. First, STFT is a generic signal transformation that
is not necessarily optimal for speech separation. Second, accu-
rate reconstruction of the phase of the clean sources is a nontriv-
ial problem, and the erroneous estimation of the phase introduces
an upper bound on the accuracy of the reconstructed audio. This
issue is evident by the imperfect reconstruction accuracy of the
sources even when the ideal clean magnitude spectrograms are
applied to the mixture. Although methods for phase reconstruc-
tion can be applied to alleviate this issue [11], [13], [14], the
performance of the method remains suboptimal. Third, success-
ful separation from the time-frequency representation requires a
high-resolution frequency decomposition of the mixture signal,
which requires a long temporal window for the calculation of
STFT. This requirement increases the minimum latency of the
system, which limits its applicability in real-time, low-latency
applications such as in telecommunication and hearable devices.
For example, the window length of STFT in most speech sepa-
ration systems is at least 32 ms [5], [7], [8] and is even greater
in music separation applications, which require an even higher
resolution spectrogram (higher than 90 ms) [15], [16].

Because these issues arise from formulating the separation
problem in the time-frequency domain, a logical approach is to
avoid decoupling the magnitude and the phase of the sound by
directly formulating the separation in the time domain. Previous

2329-9290 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7447-3885
https://orcid.org/0000-0002-2987-759X
mailto:yl3364@columbia.edu
mailto:nima@ee.columbia.edu


LUO AND MESGARANI: CONV-TASNET: SURPASSING IDEAL TIME-FREQUENCY MAGNITUDE MASKING FOR SPEECH SEPARATION 1257

studies have explored the feasibility of time-domain speech sep-
aration through methods such as independent component anal-
ysis (ICA) [17] and time-domain non-negative matrix factoriza-
tion (NMF) [18]. However, the performance of these systems has
not been comparable with the performance of time-frequency
approaches, particularly in terms of their ability to scale and
generalize to large data. On the other hand, a few recent studies
have explored deep learning for time-domain audio separation
[19]–[21]. The shared idea in all these systems is to replace
the STFT step for feature extraction with a data-driven repre-
sentation that is jointly optimized with an end-to-end training
paradigm. These representations and their inverse transforms
can be explicitly designed to replace STFT and iSTFT. Alterna-
tively, feature extraction together with separation can be implic-
itly incorporated into the network architecture, for example by
using an end-to-end convolutional neural network (CNN) [22],
[23]. These methods are different in how they extract features
from the waveform and in terms of the design of the separation
module. In [19], a convolutional encoder motivated by discrete
cosine transform (DCT) is used as the front-end. The separation
is then performed by passing the encoder features to a multi-
layer perceptron (MLP). The reconstruction of the waveforms
is achieved by inverting the encoder operation. In [20], the sep-
aration is incorporated into a U-Net 1-D CNN architecture [24]
without explicitly transforming the input into a spectrogram-like
representation. However, the performance of these methods on a
large speech corpus such as the benchmark introduced in [25] has
not been tested. Another such method is the time-domain audio
separation network (TasNet) [21], [26]. In TasNet, the mixture
waveform is modeled with a convolutional encoder-decoder ar-
chitecture, which consists of an encoder with a non-negativity
constraint on its output and a linear decoder for inverting the
encoder output back to the sound waveform. This framework is
similar to the ICA method when a non-negative mixing matrix
is used [27] and to the semi-nonnegative matrix factorization
method (semi-NMF) [28], where the basis signals are the pa-
rameters of the decoder. The separation step in TasNet is done
by finding a weighting function for each source (similar to time-
frequency masking) for the encoder output at each time step.
It has been shown that TasNet has achieved better or compa-
rable performance with various previous T-F domain systems,
showing its effectiveness and potential.

While TasNet outperformed previous time-frequency speech
separation methods in both causal and non-causal implementa-
tions, the use of a deep long short-term memory (LSTM) net-
work as the separation module in the original TasNet signif-
icantly limited its applicability. First, choosing smaller kernel
size (i.e. length of the waveform segments) in the encoder in-
creases the length of the encoder output, which makes the train-
ing of the LSTMs unmanageable. Second, the large number of
parameters in deep LSTM network significantly increases its
computational cost and limits its applicability to low-resource,
low-power platforms such as wearable hearing devices. The
third problem which we will illustrate in this paper is caused
by the long temporal dependencies of LSTM networks which
often results in inconsistent separation accuracy, for example,
when changing the starting point of the mixture. To alleviate the

limitations of the previous TasNet, we propose the fully-
convolutional TasNet (Conv-TasNet) that uses only convolu-
tional layers in all stages of processing. Motivated by the success
of temporal convolutional network (TCN) models [29]–[31],
Conv-TasNet uses stacked dilated 1-D convolutional blocks to
replace the deep LSTM networks for the separation step. The
use of convolution allows parallel processing on consecutive
frames or segments to greatly speed up the separation process
and also significantly reduces the model size. To further de-
crease the number of parameters and the computational cost,
we substitute the original convolution operation with depthwise
separable convolution [32], [33]. We show that with these modi-
fications, Conv-TasNet significantly increases the separation ac-
curacy over the previous LSTM-TasNet in both causal and non-
causal implementations. Moreover, the separation accuracy of
Conv-TasNet surpasses the performance of ideal time-frequency
magnitude masks, including the ideal binary mask (IBM [34]),
ideal ratio mask (IRM [35], [36]), and Winener filter-like
mask (WFM [37]) in both signal-to-distortion ratio (SDR) and
subjective (mean opinion score, MOS) measures.

The rest of the paper is organized as follows. We introduce the
proposed Conv-TasNet in Section II, describe the experimental
procedures in Section III, and show the experimental results and
analysis in Section IV.

II. CONVOLUTIONAL TIME-DOMAIN AUDIO

SEPARATION NETWORK

The fully-convolutional time-domain audio separation net-
work (Conv-TasNet) consists of three processing stages, as
shown in Fig. 1(A): encoder, separation, and decoder. First, an
encoder module is used to transform short segments of the mix-
ture waveform into their corresponding representations in an
intermediate feature space. This representation is then used to
estimate a multiplicative function (mask) for each source at each
time step. The source waveforms are then reconstructed by trans-
forming the masked encoder features using a decoder module.
We describe the details of each stage in this section.

A. Time-Domain Speech Separation

The problem of single-channel speech separation can be for-
mulated in terms of estimating C sources s1(t), . . . , sc(t) ∈
R1×T , given the discrete waveform of the mixture x(t) ∈ R1×T ,
where

x(t) =

C∑

i=1

si(t). (1)

In time-domain audio separation, we aim to directly estimate
si(t), i = 1, . . . , C, from x(t).

B. Convolutional Encoder-Decoder

The input mixture sound can be divided into overlapping
segments of length L, represented by xk ∈ R1×L, where k =
1, . . . , T̂ denotes the segment index and T̂ denotes the total
number of segments in the input. xk is transformed into a N -
dimensional representation, w ∈ R1×N by a 1-D convolution
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Fig. 1. (A) The block diagram of the TasNet system. An encoder maps a segment of the mixture waveform to a high-dimensional representation and a separation
module calculates a multiplicative function (i.e., a mask) for each of the target sources. A decoder reconstructs the source waveforms from the masked features.
(B) A flowchart of the proposed system. A 1-D convolutional autoencoder models the waveforms and a temporal convolutional network (TCN) separation module
estimates the masks based on the encoder output. Different colors in the 1-D convolutional blocks in TCN denote different dilation factors. (C) The design of
1-D convolutional block. Each block consists of a 1 × 1-conv operation followed by a depthwise convolution (D − conv) operation, with nonlinear activation
function and normalization added between each two convolution operations. Two linear 1 × 1−conv blocks serve as the residual path and the skip-connection
path respectively.

operation, which is reformulated as a matrix multiplication (the
index k is dropped from now on):

(2)

where U ∈ ℝN×L contains N vectors (encoder basis functions)
with length L each, and H(·) is an optional nonlinear function.
In [21], [26], H(·) was the rectified linear unit (ReLU) to ensure
that the representation is non-negative. The decoder reconstructs
the waveform from this representation using a 1-D transposed
convolution operation, which can be reformulated as another
matrix multiplication:

x̂ = wV (3)

where x̂ ∈ ℝ1×L is the reconstruction of x, and the rows in
V ∈ ℝN×L are the decoder basis functions, each with length L.
The overlapping reconstructed segments are summed together
to generate the final waveforms.

Although we reformulate the encoder/decoder operations as
matrix multiplication, the term ”convolutional autoencoder” is
used because in actual model implementation, convolutional
and transposed convolutional layers can more easily handle the
overlap between segments and thus enable faster training and
better convergence.1

1With our Pytorch implementation, this is possibly due to the different auto-
grad mechanisms in fully-connected layer and 1-D (transposed) convolutional
layers.

C. Estimating the Separation Masks

The separation for each frame is performed by estimating
C vectors (masks) mi ∈ ℝ1×N , i = 1, . . . , C where C is the
number of speakers in the mixture that is multiplied by the en-
coder output w. The mask vectors mi have the constraint that
mi ∈ [0, 1]. The representation of each source, di ∈ ℝ1×N , is
then calculated by applying the corresponding mask, mi, to the
mixture representation w:

di = w mi (4)

where denotes element-wise multiplication. The waveform
of each source ŝi, i = 1, . . . , C is then reconstructed by the de-
coder:

ŝi = diV. (5)

The unit summation constraint in [21], [26], C
i=1 mi =

1, was applied based on the assumption that the encoder-
encoder architecture can perfectly reconstruct the input mixture.
In Section IV-A, we will examine the consequence of relaxing
this unity summation constraint on separation accuracy.

D. Convolutional Separation Module

Motivated by the temporal convolutional network (TCN)
[29]–[31], we propose a fully-convolutional separation mod-
ule that consists of stacked 1-D dilated convolutional blocks, as
shown in Fig. 1(B). TCN was proposed as a replacement for

w = H(xUT)
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RNNs in various sequence modeling tasks. Each layer in a TCN
consists of 1-D convolutional blocks with increasing dilation
factors. The dilation factors increase exponentially to ensure a
sufficiently large temporal context window to take advantage of
the long-range dependencies of the speech signal, as denoted
with different colors in Fig. 1(B). In Conv-TasNet, M convolu-
tional blocks with dilation factors 1, 2, 4, . . . , 2M−1 are repeated
R times. The input to each block is zero padded accordingly to
ensure the output length is the same as the input. The output of
the TCN is passed to a convolutional block with kernel size 1
(1× 1−conv block, also known as pointwise convolution) for
mask estimation. The 1× 1−conv block together with a non-
linear activation function estimates C mask vectors for the C
target sources.

Fig. 1(C) shows the design of each 1-D convolutional block.
The design of the 1-D convolutional blocks follows [38], where a
residual path and a skip-connection path are applied: the resid-
ual path of a block serves as the input to the next block, and
the skip-connection paths for all blocks are summed up and
used as the output of the TCN. To further decrease the num-
ber of parameters, depthwise separable convolution (S-conv(·))
is used to replace standard convolution in each convolutional
block. Depthwise separable convolution (also referred to as sep-
arable convolution) has proven effective in image processing
tasks [32], [33] and neural machine translation tasks [39]. The
depthwise separable convolution operator decouples the stan-
dard convolution operation into two consecutive operations, a
depthwise convolution (D-conv(·)) followed by pointwise con-
volution (1× 1−conv(·)):

D-conv(Y,K) = concat(yj � kj), j = 1, . . . , N (6)

S-conv(Y,K,L) = D-conv(Y,K)� L (7)

where Y ∈ RG×M is the input to S-conv(·), K ∈ RG×P is the
convolution kernel with sizeP , yj ∈ R1×M and kj ∈ R1×P are
the rows of matrices Y and K, respectively, L ∈ RG×H×1 is the
convolution kernel with size 1, and � denotes the convolution
operation. In other words, the D-conv(·) operation convolves
each row of the inputY with the corresponding row of matrixK,
and the 1× 1−conv block linearly transforms the feature space.
In comparison with the standard convolution with kernel size
K̂ ∈ RG×H×P , depthwise separable convolution only contains
G× P +G×H parameters, which decreases the model size
by a factor of H×P

H+P ≈ P when H � P .
A nonlinear activation function and a normalization operation

are added after both the first 1× 1-conv and D-conv blocks
respectively. The nonlinear activation function is the parametric
rectified linear unit (PReLU) [40]:

PReLU(x) =

{
x, ifx ≥ 0

αx, otherwise
(8)

where α ∈ R is a trainable scalar controlling the negative slope
of the rectifier. The choice of the normalization method in the
network depends on the causality requirement. For noncausal
configuration, we found empirically that global layer normal-
ization (gLN) outperforms all other normalization methods. In
gLN, the feature is normalized over both the channel and the

time dimensions:

gLN(F) =
F− E[F]√
V ar[F] + ε

� γ + β (9)

E[F] =
1

NT

∑

NT

F (10)

V ar[F] =
1

NT

∑

NT

(F− E[F])2 (11)

where F ∈ RN×T is the feature, γ, β ∈ RN×1 are trainable pa-
rameters, and ε is a small constant for numerical stability. This is
identical to the standard layer normalization applied in computer
vision models where the channel and time dimension correspond
to the width and height dimension in an image [41]. In causal
configuration, gLN cannot be applied since it relies on the fu-
ture values of the signal at any time step. Instead, we designed
a cumulative layer normalization (cLN) operation to perform
step-wise normalization in the causal system:

cLN(fk) =
fk − E[f t≤k]√
V ar[f t≤k] + ε

� γ + β (12)

E[f t≤k] =
1

Nk

∑

Nk

f t≤k (13)

V ar[f t≤k] =
1

Nk

∑

Nk

(f t≤k − E[f t≤k])
2 (14)

where fk ∈ RN×1 is the k-th frame of the entire feature
F, f t≤k ∈ RN×k corresponds to the feature of k frames
[f1, . . . , fk], and γ, β ∈ RN×1 are trainable parameters applied
to all frames. To ensure that the separation module is invariant
to the scaling of the input, the selected normalization method
is applied to the encoder output w before it is passed to the
separation module.

At the beginning of the separation module, a linear1× 1-conv
block is added as a bottleneck layer. This block determines the
number of channels in the input and residual path of the sub-
sequent convolutional blocks. For instance, if the linear bottle-
neck layer has B channels, then for a 1-D convolutional block
with H channels and kernel size P , the size of the kernel in
the first 1× 1-conv block and the first D-conv block should
be O ∈ RB×H×1 and K ∈ RH×P respectively, and the size of
the kernel in the residual paths should be LRs ∈ RH×B×1. The
number of output channels in the skip-connection path can be
different than B, and we denote the size of kernels in that path
as LSc ∈ RH×Sc×1.

III. EXPERIMENTAL PROCEDURES

A. Dataset

We evaluated our system on two-speaker and three-speaker
speech separation problems using the WSJ0-2mix and WSJ0-
3mix datasets [25]. 30 hours of training and 10 hours of valida-
tion data are generated from speakers in si_tr_s from the datasets.
The speech mixtures are generated by randomly selecting utter-
ances from different speakers in the Wall Street Journal dataset
(WSJ0) and mixing them at random signal-to-noise ratios (SNR)
between −5 dB and 5 dB. 5 hours of evaluation set is generated
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TABLE I
HYPERPARAMETERS OF THE NETWORK

in the same way using utterances from 16 unseen speakers in
si_dt_05 and si_et_05. The scripts for creating the dataset can
be found at [42]. All the waveforms are resampled at 8 kHz.

B. Experiment Configurations

The networks are trained for 100 epochs on 4-second long
segments. The initial learning rate is set to 1e−3. The learning
rate is halved if the accuracy of validation set is not improved
in 3 consecutive epochs. Adam [43] is used as the optimizer.
A 50% stride size is used in the convolutional autoencoder (i.e.
50% overlap between consecutive frames). Gradient clipping
with maximum L2-norm of 5 is applied during training. The
hyperparameters of the network are shown in Table I. A Pytorch
implementation of the Conv-TasNet model can be found at.2

C. Training Objective

The objective of training the end-to-end system is maximiz-
ing the scale-invariant source-to-noise ratio (SI-SNR), which has
commonly been used as the evaluation metric for source separa-
tion replacing the standard source-to-distortion ratio (SDR) [5],
[9], [44]. SI-SNR is defined as:

⎧
⎪⎪⎨

⎪⎪⎩

starget :=
〈ŝ,s〉s
‖s‖2

enoise := ŝ− starget

SI-SNR := 10 log10
‖starget‖2
‖enoise‖2

(15)

where ŝ ∈ R1×T and s ∈ R1×T are the estimated and original
clean sources, respectively, and ‖s‖2 = 〈s, s〉 denotes the signal
power. Scale invariance is ensured by normalizing ŝ and s to
zero-mean prior to the calculation. Utterance-level permutation
invariant training (uPIT) is applied during training to address
the source permutation problem [7].

D. Evaluation Metrics

We report the scale-invariant signal-to-noise ratio improve-
ment (SI-SNRi) and signal-to-distortion ratio improvement
(SDRi) [44] as objective measures of separation accuracy.

2https://github.com/naplab/Conv-TasNet

SI-SNR is defined in equation 15. The reported improvements
in Tables III to V indicate the additive values over the original
mixture. In addition to the distortion metrics, we also evaluated
the quality of the separated mixtures using both the perceptual
evaluation of subjective quality (PESQ, [45]) and the mean opin-
ion score (MOS) [46] by asking 40 normal hearing subjects to
rate the quality of the separated mixtures. All human testing pro-
cedures were approved by the local institutional review board
(IRB) at Columbia University in the City of New York.

E. Comparison With Ideal Time-Frequency Masks

Following the common configurations in [5], [7], [9], the ideal
time-frequency masks were calculated using STFT with a 32 ms
window size and 8 ms hop size with a Hanning window. The ideal
masks include the ideal binary mask (IBM), ideal ratio mask
(IRM), and Wiener filter-like mask (WFM), which are defined
for source i as:

IBMi(f, t) =

{
1, |Si(f, t)| > |Sj �=i(f, t)|
0, otherwise

(16)

IRMi(f, t) =
|Si(f, t)|∑C
j=1 |Sj(f, t)|

(17)

WFMi(f, t) =
|Si(f, t)|2∑C
j=1 |Sj(f, t)|2

(18)

where Si(f, t) ∈ CF×T are the complex-valued spectrograms
of clean sources i = 1, . . . , C.

IV. RESULTS

Fig. 2 visualizes all the internal variables of Conv-TasNet
for one example mixture sound with two overlapping speak-
ers (denoted by red and blue). The encoder and decoder basis
functions are sorted by the similarity of the Euclidean distance
of the basis functions found using the unweighted pair group
method with arithmetic mean (UPGMA) method [47]. The ba-
sis functions show a diversity of frequency and phase tuning. The
representation of the encoder is colored according to the power
of each speaker at the corresponding basis output at each time
point, demonstrating the sparsity of the encoder representation.
As can be seen in Fig. 2, the estimated masks for the two speak-
ers highly resemble their encoder representations, which allows
for the suppression of the encoder outputs that correspond to
the interfering speaker and the extraction of the target speaker
in each mask. The separated waveforms for the two speakers
are estimated by the linear decoder, whose basis functions are
shown in Fig. 2. The separated waveforms are shown on the
right.

A. Non-Negativity of the Encoder Output

The non-negativity of the encoder output was enforced in
[21], [26] using a rectified-linear nonlinearity (ReLU) function.
This constraint was based on the assumption that the masking
operation on the encoder output is only meaningful when the
mixture and speaker waveforms can be represented with a non-
negative combination of the basis functions, since an unbounded

https://github.com/naplab/Conv-TasNet
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Fig. 2. Visualization of the encoder and decoder basis functions, encoder representation, and source masks for a sample 2-speaker mixture. The speakers are
shown in red and blue. The encoder representation is colored according to the power of each speaker at each basis function and point in time. The basis functions
are sorted according to their Euclidean similarity and show diversity in frequency and phase tuning.

encoder representation may result in unbounded masks. How-
ever, by removing the nonlinear function H, another assumption
can be made: with an unbounded but highly overcomplete rep-
resentation of the mixture, a set of non-negative masks can still
be found to reconstruct the clean sources. In this case, the over-
completeness of the representation is crucial. If there exist only a
unique weight feature for the mixture as well as for the sources,
the non-negativity of the mask cannot be guaranteed. Also note
that in both assumptions, we put no constraint on the relation-
ship between the encoder and decoder basis functions U and
V, meaning that they are not forced to reconstruct the mixture
signal perfectly. One way to explicitly ensure the autoencoder
property is by choosing V to be the pseudo-inverse of U (i.e.
least square reconstruction). The choice of encoder/decoder de-
sign affects the mask estimation: in the case of an autoencoder,
the unit summation constraint must be satisfied; otherwise, the
unit summation constraint is not strictly required. To illustrate
this point, we compared five different encoder-decoder config-
urations:

1) Linear encoder with its pseudo-inverse (Pinv) as decoder,
i.e. w = x(VTV)−1VT and x̂ = wV, with Softmax
function for mask estimation.

2) Linear encoder and decoder where w = xU and x̂ =
wV, with Softmax or Sigmoid function for mask esti-
mation.

3) Encoder with ReLU activation and linear decoder where
w = ReLU(xU) and x̂ = wV, with Softmax or Sigmoid
function for mask estimation.

Separation accuracy of different configurations in Table III
shows that pseudo-inverse autoencoder leads to the worst per-
formance, indicating that an explicit autoencoder configura-
tion does not necessarily improve the separation score in this

framework. The performance of all other configurations is com-
parable. Because linear encoder and decoder with Sigmoid func-
tion achieves a slightly better accuracy over other methods, we
used this configuration in all the following experiments.

B. Optimizing the Network Parameters

We evaluate the performance of Conv-TasNet on two speaker
separation tasks as a function of different network parameters.
Table II shows the performance of the systems with different
parameters, from which we can conclude the following state-
ments:

i) Encoder/decoder: Increasing the number of basis signals
in the encoder/decoder increases the overcompleteness of
the basis signals and improves the performance.

ii) Hyperparameters in the 1-D convolutional blocks: A pos-
sible configuration consists of a small bottleneck size
B and a large number of channels in the convolutional
blocksH . This matches the observation in [48], where the
ratio between the convolutional block and the bottleneck
H/B was found to be best around 5. Increasing the num-
ber of channels in the skip-connection block improves
the performance while greatly increases the model size.
Therefore, we selected a small skip-connection block as
a trade-off between performance and model size.

iii) Number of 1-D convolutional blocks: When the receptive
field is the same, deeper networks lead to better perfor-
mance, possibly due to the increased model capacity.

iv) Size of receptive field: Increasing the size of receptive
field leads to better performance, which shows the im-
portance of modeling the temporal dependencies in the
speech signal.
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TABLE II
THE EFFECT OF DIFFERENT CONFIGURATIONS IN CONV-TASNET

TABLE III
SEPARATION SCORE FOR DIFFERENT SYSTEM CONFIGURATIONS

v) Length of each segment: Shorter segment length consis-
tently improves performance. Note that the best system
uses a filter length of only 2 ms ( L

fs = 16
8000 = 0.002s),

which makes it very difficult to train a deep LSTM net-
work with the same L due to the large number of time
steps in the encoder output.

vi) Causality: Using a causal configuration leads to a signif-
icant drop in the performance. This drop could be due
to the causal convolution and/or the layer normalization
operations.

C. Comparison of Conv-TasNet With Previous Methods

We compared the separation accuracy of Conv-TasNet with
previous methods using SDRi and SI-SNRi. Table IV com-
pares the performance of Conv-TasNet with other state-of-the-
art methods on the same WSJ0-2mix dataset. For all systems, we
list the best results that have been reported in the literature. The
numbers of parameters in different methods are based on our im-
plementations, except for [12] which is provided by the authors.
The missing values in the table are either because the numbers
were not reported in the study or because the results were calcu-
lated with a different STFT configuration. The previous TasNet
in [26] is denoted by the (B)LSTM-TasNet. While the BLSTM-
TasNet already outperformed IRM and IBM, the non-causal
Conv-TasNet significantly surpasses the performance of all three
ideal T-F masks in SI-SNRi and SDRi metrics with a signifi-
cantly smaller model size comparing with all previous methods.

Table V compares the performance of Conv-TasNet with
those of other systems on a three-speaker speech separation task

TABLE IV
COMPARISON WITH OTHER METHODS ON WSJ0-2MIX DATASET

TABLE V
COMPARISON WITH OTHER SYSTEMS ON WSJ0-3MIX DATASET

involving the WSJ0-3mix dataset. The non-causal Conv-TasNet
system significantly outperforms all previous STFT-based sys-
tems in SDRi. While there is no prior result on a causal al-
gorithm for three-speaker separation, the causal Conv-TasNet
significantly outperforms even the other two non-causal STFT-
based systems [5], [7]. Examples of separated audio for two and
three speaker mixtures from both causal and non-causal imple-
mentations of Conv-TasNet are available online [49].
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Fig. 3. Subjective and objective quality evaluation of separated utterances in WSJ0-2mix. (A) The mean opinion scores (MOS, N = 40) for IRM, Conv-TasNet
and the clean utterance. Conv-TasNet significantly outperforms IRM (p < 1e− 16, t-test). (B) PESQ scores are higher for IRM compared to the Conv-TasNet
(p < 1e− 16, t-test). Error bars indicate standard error (STE) (C) MOS versus PESQ for individual utterances. Each dot denotes one mixture utterance, separated
using the IRM (blue) or Conv-TasNet (red). The subjective ratings of almost all utterances for Conv-TasNet are higher than their corresponding PESQ scores.

TABLE VI
PESQ SCORES FOR THE IDEAL T-F MASKS AND CONV-TASNET ON THE ENTIRE

WSJ0-2MIX AND WSJ0-3MIX TEST SETS

D. Subjective and Objective Quality Evaluation Of
Conv-TasNet

In addition to SDRi and SI-SNRi, we evaluated the subjective
and objective quality of the separated speech and compared with
three ideal time-frequency magnitude masks. Table VI shows the
PESQ score for Conv-TasNet and IRM, IBM, and WFM, where
IRM has the highest score for both WSJ0-2mix and WSJ0-3mix
dataset. However, since PESQ aims to predict the subjective
quality of speech, human quality evaluation can be considered
as the ground truth. Therefore, we conducted a psychophysics
experiment in which we asked 40 normal hearing subjects to
listen and rate the quality of the separated speech sounds. Be-
cause of the practical limitations of human psychophysics exper-
iments, we restricted the subjective comparison of Conv-TasNet
to the ideal ratio mask (IRM) which has the highest PESQ score
among the three ideal masks (Table VI). We randomly chose
25 two-speaker mixture sounds from the two-speaker test set
(WSJ0-2mix). We avoided a possible selection bias by ensur-
ing that the average PESQ scores for the IRM and Conv-TasNet
separated sounds for the selected 25 samples were equal to the
average PESQ scores over the entire test set (comparison of
Tables VI and VII). The length of each utterance was constrained
to be within 0.5 standard deviation of the mean of the entire test
set. The subjects were asked to rate the quality of the clean
utterances, the IRM-separated utterances, and the Conv-TasNet
separated utterances on the scale of 1 to 5 (1: bad, 2: poor, 3: fair,
4: good, 5: excellent). A clean utterance was first given as the
reference for the highest possible score (i.e., 5). Then the clean,
IRM, and Conv-TasNet samples were presented to the subjects

TABLE VII
MEAN OPINION SCORE (MOS, N = 40) AND PESQ FOR THE 25 SELECTED

UTTERANCES FROM THE WSJ0-2MIX TEST SET

TABLE VIII
PROCESSING TIME FOR CAUSAL LSTM-TASNET AND CONV-TASNET. THE

SPEED IS EVALUATED AS THE AVERAGE TIME REQUIRED TO SEPARATE A

FRAME (TIME PER FRAME, TPF)

in random order. The mean opinion score (MOS) of each of the
25 utterances was then averaged over the 40 subjects.

Fig. 3 and Table VII show the result of the human subjective
quality test, where the MOS for Conv-TasNet is significantly
higher than the MOS for the IRM (p < 1e− 16, t-test). In addi-
tion, the superior subjective quality of Conv-TasNet over IRM
is consistent across most of the 25 test utterances as shown in
Fig. 3(C). This observation shows that PESQ consistently un-
derestimates MOS for Conv-TasNet separated utterances, which
may be due to the dependence of PESQ on the magnitude spec-
trogram of speech [45] which could produce lower scores for
time-domain approaches.

E. Processing Speed Comparison

Table VIII compares the processing speed of LSTM-TasNet
and causal Conv-TasNet. The speed is evaluated as the average
processing time for the systems to separate each frame in the
mixtures, which we refer to as time per frame (TPF). TPF deter-
mines whether a system can be implemented in real time, which
requires a TPF that is smaller than the frame length.
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Fig. 4. (A) SDRi of an example mixture separated using LSTM-TasNet and
causal Conv-TasNet as a function of the starting point in the mixture. The per-
formance of Conv-TasNet is considerably more consistent and insensitive to
the start point. (B) Standard deviation of SDRi across all the mixtures in the
WSJ0-2mix test set with varying starting points.

For the CPU configuration, we tested the system with one
processor on an Intel Core i7-5820K CPU. For the GPU config-
uration, we preloaded both the systems and the data to a Nvidia
Titan Xp GPU. LSTM-TasNet with CPU configuration has a
TPF close to its frame length (5 ms), which is only marginally
acceptable in applications where only a slower CPU is available.
Moreover, the processing in LSTM-TasNet is done sequentially,
which means that the processing of each time frame must wait for
the completion of the previous time frame, further increasing the
total processing time of the entire utterance. Since Conv-TasNet
decouples the processing of consecutive frames, the processing
of subsequent frames does not have to wait until the comple-
tion of the current frame and allows the possibility of parallel
computing. This process leads to a TPF that is 5 times smaller
than the frame length (2 ms) in our CPU configuration. There-
fore, even with slower CPUs, Conv-TasNet can still perform
real-time separation.

F. Sensitivity of LSTM-TasNet to the Mixture Starting Point

Unlike language processing tasks where sentences have de-
termined starting words, it is difficult to define a general starting
sample or frame for speech separation and enhancement tasks. A
robust audio processing system should therefore be insensitive to
the starting point of the mixture. However, we empirically found
that the performance of the causal LSTM-TasNet is very sensi-
tive to the exact starting point of the mixture, which means that
shifting the input mixture by several samples may adversely af-
fect the separation accuracy. We systematically examined the ro-
bustness of LSTM-TasNet and causal Conv-TasNet to the start-
ing point of the mixture by evaluating the separation accuracy
for each mixture in the WSJ0-2mix test set with different sample
shifts of the input. A shift of s samples corresponds to starting
the separation at sample s instead of the first sample. Fig. 4(A)
shows the performance of both systems on the same example
mixture with different values of input shift. We observe that,
unlike LSTM-TasNet, the causal Conv-TasNet performs consis-
tently well for all shift values of the input mixture. We further
tested the overall robustness for the entire test set by calculat-
ing the standard deviation of SDRi in each mixture with shifted
mixture inputs similar to Fig. 4(A). The box plots of all the mix-
tures in the WSJ0-2mix test set in Fig. 4(B) show that causal

Fig. 5. Visualization of encoder and decoder basis functions and the mag-
nitudes of their FFTs. The basis functions are sorted based on their pairwise
Euclidean similarity.

Conv-TasNet performs consistently better across the entire test
set, which confirms the robustness of Conv-TasNet to variations
in the starting point of the mixture. One explanation for this in-
consistency may be due to the sequential processing constraint
in LSTM-TasNet which means that failures in previous frames
can accumulate and affect the separation performance in all fol-
lowing frames, while the decoupled processing of consecutive
frames in Conv-TasNet alleviates the effect of occasional error.

G. Properties of the Basis Functions

One of the motivations for replacing the STFT representation
of the mixture signal with the convolutional encoder in Tas-
Net was to construct a representation of the audio that is opti-
mized for speech separation. To shed light on the properties of
the encoder and decoder representations, we examine the basis
functions of the encoder and decoder (rows of the matrices U
and V). The basis functions are shown in Fig. 5 for the best
noncausal Conv-TasNet, sorted in the same way as Fig. 2. The
magnitudes of the FFTs for each filter are also shown in the
same order. As seen in the figure, the majority of the filters are
tuned to lower frequencies. In addition, it shows that filters with
the same frequency tuning express various phase values for that
frequency. This observation can be seen by the circular shift of
the low-frequency basis functions. This result suggests an im-
portant role for low-frequency features of speech such as pitch
as well as explicit encoding of the phase information to achieve
superior speech separation performance.

V. DISCUSSION

In this paper, we introduced the fully-convolutional time-
domain audio separation network (Conv-TasNet), a deep learn-
ing framework for time-domain speech separation. This frame-
work addresses the shortcomings of speech separation in the
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STFT domain, including the decoupling of phase and magni-
tude, the suboptimal representation of the mixture audio for
separation, and the high latency of calculating the STFT. The
improvements are accomplished by replacing the STFT with a
convolutional encoder-decoder architecture. The separation in
Conv-TasNet is done using a temporal convolutional network
(TCN) architecture together with a depthwise separable convo-
lution operation to address the challenges of deep LSTM net-
works. Our evaluations showed that Conv-TasNet significantly
outperforms STFT speech separation systems even when the
ideal time-frequency masks for the target speakers are used. In
addition, Conv-TasNet has a smaller model size and a shorter
minimum latency, which makes it suitable for low-resource, low
latency applications.

Unlike STFT which has a well-defined inverse transform that
can perfectly reconstruct the input, best performance in the
proposed model is achieved by an overcomplete linear convo-
lutional encoder-decoder framework without guaranteeing the
perfect reconstruction of the input. This observation motivates
rethinking of autoencoder and overcompleteness in the source
separation problem which may share similarities to the stud-
ies of overcomplete dictionary and sparse coding [51], [52].
Moreover, the analysis of the encoder/decoder basis functions in
Section IV-G revealed two interesting properties. First, most of
the filters are tuned to low acoustic frequencies (more than 60%
tuned to frequencies below 1 kHz). This pattern of frequency rep-
resentation, which we found using a data-driven method, roughly
resembles the well-known mel-frequency scale [53] as well as
the tonotopic organization of the frequencies in the mammalian
auditory system [54], [55]. In addition, the overexpression of
lower frequencies may indicate the importance of accurate pitch
tracking in speech separation, similar to what has been reported
in human multitalker perception studies [56]. In addition, we
found that filters with the same frequency tuning explicitly ex-
press various phase information. In contrast, this information is
implicit in the STFT operations, where the real and imaginary
parts only represent symmetric (cosine) and asymmetric (sine)
phases, respectively. This explicit encoding of signal phase val-
ues may be the key reason for the superior performance of TasNet
over the STFT-based separation methods.

The combination of high accuracy, short latency, and small
model size makes Conv-TasNet a suitable choice for both offline
and real-time, low-latency speech processing applications such
as embedded systems and wearable hearing and telecommuni-
cation devices. Conv-TasNet can also serve as a front-end mod-
ule for tandem systems in other audio processing tasks, such
as multitalker speech recognition [57]–[60] and speaker iden-
tification [61], [62]. On the other hand, several limitations of
Conv-TasNet must be addressed before it can be actualized, in-
cluding the long-term tracking of speakers and generalization
to noisy and reverberant environments. Because Conv-TasNet
uses a fixed temporal context length, the long-term tracking of
an individual speaker may fail, particularly when there is a long
pause in the mixture audio. In addition, the generalization of
Conv-TasNet to noisy and reverberant conditions must be fur-
ther tested [26], as time-domain approaches are more prone to
temporal distortions which are particularly severe in reverber-
ant acoustic environments. In such conditions, extending the

Conv-TasNet framework to incorporate multiple input audio
channels may prove advantageous when more than one micro-
phone is available. Previous studies have shown the benefit of
extending speech separation to multichannel inputs [63]–[65],
particularly in adverse acoustic conditions and when the number
of interfering speakers is large (e.g., more than 3).

In summary, Conv-TasNet represents a significant step to-
ward the realization of speech separation algorithms and opens
many future research directions that would further improve its
accuracy, speed, and computational cost, which could eventu-
ally make automatic speech separation a common and necessary
feature of every speech processing technology designed for real-
world applications.
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