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Abstract

A new voice activity detection algorithm based on long-term pitch divergence is presented. The long-term pitch
divergence not only decomposes speech signals with a bionic decomposition but also makes full use of long-term
information. It is more discriminative comparing with other feature sets, such as long-term spectral divergence.
Experimental results show that among six analyzed algorithms, the proposed algorithm is the best one with the
highest non-speech hit rate and a reasonably high speech hit rate.
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1 Introduction
Voice activity detection (VAD) is an essential module in
almost every audio signal processing application, includ-
ing coding, enhancement, and recognition. VAD can in-
crease efficiency and improve recognition rates by
removing insignificant parts from the audio signals, such
as silences or background noises and retaining human
voices. In high signal-to-noise ratio (SNR) conditions, it
is a relatively simple task since we can reach a satisfying
result only by computing the frame energies and setting
an appropriate threshold for classification [1]. However,
in modern real-life applications, audio signals are always
corrupted by the background noises which make those
simple VAD algorithms deteriorate dramatically.
For VAD under extreme noisy conditions, a consider-

able amount of research has been done [2–5]. And the
main difference of these algorithms lies in the exploited
feature sets in the systems, including spectrum-based fea-
tures [6], cepstrum-based features [7], fundamental
frequency-based features [8], entropy [9], harmonic [10],
and energy-based features. Among these features, long-
term spectral divergence (LTSD) feature [11] stands out
because of its simplicity, adaptability, and good behaviors.
Nevertheless, the performance may still need to be im-
proved in non-stationary noises, especially in environmen-
tal noises such as factory or battlefield noises which are

usually characterized by large, irregular random bursts
embedded in a relatively stationary background [12].
In this paper, we propose a new VAD algorithm based

on long-term pitch divergence (LTPD) features. Different
from the LTSD feature, LTPD takes advantage of time-
varying pitch information [13] and can deal with the tough
noises mentioned above. In a sense, the pitch is a special
type of spectrum. Both of them try to decompose audio
signals into spectral bands; however, the scale of pitch
bands is not linear but in some logarithmic fashion, that is
termed as the equal-tempered scale. In musically related
task, this logarithmic form of decomposition has been
proved to be more suitable for human perception and
pitch-based features are more discriminative. Thus, com-
pared to LTSD, LTPD not only benefits from the long-
term information about speech signals but also benefits
from the logarithmic decomposition of speech signals
which is more reasonable than spectrum. The experimen-
tal results show that the average performance of the pro-
posed method is the best among the VADs analyzed.
The outline of this paper is as follows: Pitch-based

audio features are given in Section 2. Then, we present
our LTPE-VAD algorithm in Section 3. Section 4 depicts
database and experimental setup and analyzes evaluation
results. Finally, the conclusion is given in Section 5.

2 Long-term pitch divergence features
2.1 Pitch-based audio features
The equal-tempered frequency scale used in Western
classical music is not linear, but logarithmic due to the
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facts that humans perceive musical intervals approxi-
mately logarithmically. Let f(p) denote the center fre-
quency of the pitch p ∈ [21 : 108] corresponding to the
musical note A0 to C8. And the pitch 108 is correspond-
ing to frequency 4186 Hz. Then, the relationship be-
tween the pitch p and its center frequency f(p) is given
by:

f pð Þ ¼ 2
p−69
12 ⋅440 ð1Þ

Pitch-based audio features are extracted by decompos-
ing audio signals into 88 frequency bands, where each
band corresponds to a pitch of the equal-tempered scale
[13]. The decomposition is realized by a suitable multi-
rate filter bank consisting of elliptic filters [13]. This rep-
resentation of audio signals can then be used as a basis
for deriving various audio features of various character-
istics [13, 14], such as chroma pitch, chroma log pitch,
and chroma energy normalized statics [15].
Figure 1 shows the waveform of an audio recording

and its corresponding pitch features in various noise en-
vironments. It can be seen that the energies of this audio
are mostly concentrated in pitches range from pitch 57
to pitch 102. And other pitches are easily corrupted by

noise. Theoretically, it has a weak effect on speech intel-
ligibility when filtering out the low frequency parts of
speech [16] which are easy to be distorted by noises.
The low frequency endpoint is commonly 300 or
500 Hz, but no lower than 220 Hz [17] corresponding to
pitch 57. While the most critical intelligibility elements
of speech lie above 3 kHz, the most of average energies
in speech signals lie below 3 kHz [17] which are of more
importance for speech/non-speech detection. Thus,
pitches range from 57 to 102 are used in the proposed
method.

2.2 Definition of LTPD
Let X be a sequence of pitch features and, X(p, t) be the
value of pth pitch at frame t, where p = 57,⋯, 102 and t
= 1, 2,⋯,T. The M-order long-term pitch envelope
(LTPE) is defined as follows:

LTPEM p; tð Þ ¼ max X p; t−M þmð Þ m ¼ 0; 1;⋯; 2Mj gf
ð2Þ

The noise pitch features N is estimated from X by
using the MMSE-based estimator [18]. And the average

Fig. 1 Waveform and pitch feature representation for an audio recording
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noise pitch �N pð Þ for the pth pitch band at frame t is
defined as:

�N t pð Þ ¼ 1
t

t−1ð Þ �N t−1 pð Þ þ N p; tð Þð Þ; t
¼ 2;⋯;T ð3Þ

where, N(p, t) is the noise feature value of pth pitch at
frame t and �N 1 pð Þ ¼ N p; 1ð Þ.
The M-order long-term pitch divergence between

speech and noise is defined as the deviation of the LTPE
respect to the pth average noise pitch and is given by:

LTPDM tð Þ ¼ 10 log10
1
46

X102
p¼57

LTPE2
M p; tð Þ

�N 2
t pð Þ

 !
ð4Þ

The definitions are quite identical between LTPD and
LTSD. The main difference is the scale of spectral bands,
logarithmic rather than linear. However, this subtlety is
of considerable importance because logarithmic spectral
decomposition is superior to the linear form in theory as
well as in practice. And this conclusion can be proved
by comparing the distributions of LTPD and LTSD
shown in Section 2.3.

2.3 LTPD distributions of speech and non-speech
In this section, we will present the distributions of the
LTPD as a function of the window order M so as to clar-
ify the motivations for the algorithm proposed. To study

the distribution of the LTPD feature, speeches from the
TIMIT corpus [19] and noises (factory, fighter jet, des-
troyer, and tank noise) from the NOISEX-92 corpus [20]
were used in the analyses. More details about the data-
bases will be presented in Section 4.
Figures 2 and 3 show the effects of window length on

distributions of LTPD and LTSD for speech and non-
speech, respectively. Figure 4 shows the speech, non-
speech, and total detection errors vs. the window length.
Comparing Fig. 2 with Fig. 3, it can be concluded that
the LTPD feature is more discriminative than LTSD fea-
ture. In Fig. 2, it is not difficult to find out that the dis-
tributions of speech and non-speech are more easily
separated along with the increasing window length M.
In corroboration, the speech classification error is re-
duced when increasing the order of the long-term win-
dow, as shown in Fig. 4. The optimal value of the order
of window would be M = 3 according to the total mis-
classification errors of speech and noise in Fig. 4.
The conclusion about LTPD above is identical to that

the conclusion in [11] concerning the effect of window
length on LTSD feature. Consequently, LTPD can also
take advantage of the long-time information of speech
as LTSD does.

3 The proposed VAD algorithm
A flowchart diagram of LTPD-based VAD algorithm is
shown in Fig. 5. The specific procedure can be described

Fig. 2 Effect of window length on the LTPD distribution (SNR = −5 dB): speech (red full line) and non-speech (blue dashed line)
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Fig. 3 Effect of window length on the LTSD distribution (SNR = −5 dB): speech (red full line) and non-speech (blue dashed line)

Fig. 4 Speech, non-speech, and total detection errors vs. the window length (SNR = −5 dB)
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as follows. In the initialization step, the MMSE-based
noise estimator is initialized by using the first N frames
and the pitch filter banks are designed (see [13] for de-
tails). After initialization, the pitch features are extracted
by applying the pitch filter banks to audio signals. Then,
the LTPE is estimated by means of Eq. (2), the average
noise pitch feature is obtained by using Eq. (3), and the
LTPD is computed as Eq. (4). The original VAD deci-
sions are made by comparing the LTPD value of each
frame to a given threshold γ. If the LTPD value is larger
than the threshold, the current frame is labeled as
speech; otherwise, it is labeled as silence. The final VAD
decisions are obtained from original decisions by apply-
ing the hang-over scheme.
It should be noted that the distribution of LTPD

changes with SNRs, thus the threshold should also
vary accordingly. In LTSD-VAD algorithm, the thresh-
old is set according to the observed noise energy
levels. Here, we use a SNR-based method to deter-
mine the threshold [11]:

γ ¼
γ0 SNR tð Þ≤SNR0

SNR tð Þ−SNR0

SNR0−SNR1
γ0−γ1
� �þ γ0 SNR0 < SNR tð Þ < SNR1

γ1 SNR tð Þ≥SNR1

8><
>:

ð5Þ
where, SNR(t) is the SNR estimated at frame t. SNR0

and SNR1 are the SNRs in the cleanest and noisiest

background noises, and γ0 and γ1 are their optimal
thresholds, respectively.
This method is the very similar to [11]. However, since

we use an MMSE-based noise estimator, the estimation
of SNR is easier:

SNR tð Þ ¼ 10 log10

Xt

τ¼t−K

X
p
X2 p; τð ÞXt

τ¼t−K

X
p
N2 p; τð Þ

−1

0
@

1
A ð6Þ

where, K is a constant. The estimation of SNR is only
based on the K + 1 frames before frame t; thus, it can di-
minish the effect of time-variation of SNR.

4 Experiments and results
To illustrate the effectiveness of LTPD-VAD, some up-
to-date voice-active detection methods, which have been
proved to be noise robust, are chosen for comparison.
They are Sohn [21], Harmfreq [10], LTSD [11], LTSV
[2], and LSFM [22].

4.1 Data and experimental setup
To evaluate the proposed method, utterances from
TIMIT corpus are used. Utterances in TIMIT are on
average no longer than 4 s and contain a very small
number of non-speech segments. Thus, single utterance
is too short to evaluate a VAD algorithm properly.
Hence a number of randomly chosen utterances from
every dialects (i.e., DR1 to DR8) have been concatenated
into a single speech recording, adding 2.5 s of silence at
the beginning, ending, and junctions of the utterances.
And amplitudes of each utterance have been normalized
in order to equalize the power. The initial labels have
been obtained by a simple energy VAD and examined
visually. 47.06 % of the whole samples are labeled as ac-
tive speech samples. Two datasets, development and
test, have been constructed, and the duration of each
dataset is about 600 s. The development and test data-
sets are used to estimate the parameters and evaluate
the performance, respectively.
All noise types are taking from NOISEX-92 corpus. And

the complete list of noise types used in this evaluation is:

� factory1 (noise near plate-cutting and electrical
welding equipment);

� factory2 (noise in a car production hall);
� leopard (military vehicle noise);
� m109 (tank noise);
� opsroom (destroyer operations room background

noise);
� f16 (F-16 cockpit noise);
� buccaneer1 (Buccaneer jet traveling at 190 knots)
� buccaneer2 (Buccaneer jet traveling at 450 knots)
� babble (100 people speaking in a canteen)

Fig. 5 Flowchart diagram of LTPD-VAD algorithm
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� engine (destroyer Engine Room noise)
� hfchannel (noise in an HF radio channel after

demodulation)
� machinegun (a .50-caliber gun fired repeatedly)
� pink (pink noise)
� volvo (Volvo 340 noise)
� white (white noise)

Among these noises, only white and pink noises are
stationary.
To add noises to speeches at a desired SNR, the open-

source Filtering and Noise Adding Tool (FaNT)1 is used.
The audio signals have been divided into 50 ms-long

non-overlapping frames and windowed with a periodic
Hamming window. The pitch features are extracted by
using The Chroma Toolbox.2 The MMSE-based noise
estimator is based on MATLAB implementation estnoi-
seg in Voicebox.3 The order of LTSD is 3. And to com-
pute LTSV and LSFM, the long-term window length is 6
and the parameter of Welch-Bartlett method is 2. All of
these parameter values are smaller than those recom-
mended in the corresponding references because of a
longer frame length and a lack of the overlap factor.
The receiver operating characteristic (ROC) curves

and area under curve (AUC) values are used to describe
the average performance of the VAD algorithms. And
detection performances under different SNR levels are
also assessed in terms of non-speech hit rate (HR0) and
speech hit rate (HR1).

4.2 Evaluation results
Table 1 shows the AUC values of six evaluated methods
for all 15 types of noises under −5 dB SNR, and the best
values among all methods in different noises are given
with red bold. And Fig. 6 presents the ROC curves of
the evaluated algorithms for the six typical types of noise
under −5 dB SNR. It can be seen that the LTPD-based
VAD algorithm outperforms all other VAD methods in
seven noisy cases since these noisy cases are the most
non-stationary among NOISEX-92 dataset according to
the variability of short-time energy. The proposed
method is very suitable for such cases while other
methods deteriorate dramatically. Especially for factory1
and machinegun noises, the proposed method still ob-
tains good results while some other VAD methods seem
to exhibit worse performance nearly close to random
guess. This is due to the fact that both machinegun and
factory1 noises consist of mainly two different signals:
gun firing and silence between firing for machinegun
noise [2], and relatively stationary background noise of
electric motor roaring as well as embedded irregular
random bursts like metal banging or plate-cutting for
factory1 noise, leading to misclassifications between
noisy speech and noises because of the similar non-

stationary degrees. Moreover, comparing with the silence
background in machinegun noise, the background noise
of factory1 is more complex and challenging, resulting
in higher misclassification errors.
For other noises such as m109, opsroom, engine, and

hfchannel, the best performance is obtained by the
LTSV-based VAD algorithm, which means the LTSV
measure can effectively distinguish these noises from the
corresponding noisy speech. Not only does LTSV
method takes advantage of the long-term information
but also benefits from the signal variability defined in
LTSV. However, the LTPD-based VAD algorithm still
outperforms other algorithms except LTSV.
For the vehicle interior noise like leopard and volvo,

the characteristics of noisy speech do not change sig-
nificantly compared to that of pure speech [2] result-
ing wonderful performances for all evaluated
methods. As an exceptional case, all methods do not
perform very well under babble noise composed of
voices from 100 people speaking. However, in this
case, LTSD-based VAD algorithm is superior to other
algorithms, which means that linear spectrum-based
LTSD measure is successful in distinguishing such
noise consisting of human voices from the corre-
sponding noisy speech.
According to the average AUC value in measuring the

comprehensive property of each VAD algorithm under
different noisy environments, LPTD-based VAD algo-
rithm is significantly superior to other algorithms, even
with a stronger robustness even at low SNR.

Table 1 AUC values of the evaluated VAD algorithms under −5 dB
SNR

Noise Sohn Harmfreq LTSD LTSV LSFM LTPD

factory1 0.5538 0.5542 0.5978 0.8223 0.7113 0.8998

factory2 0.8702 0.8678 0.8508 0.9139 0.9190 0.9266

leopard 0.9608 0.9608 0.8721 0.9555 0.9623 0.9435

m109 0.9182 0.9096 0.8787 0.9653 0.9587 0.9500

opsroom 0.8183 0.8065 0.8498 0.9103 0.8561 0.8696

f16 0.8614 0.8587 0.8794 0.9296 0.8997 0.9316

buccaneer1 0.7612 0.7505 0.8471 0.9163 0.7921 0.9382

buccaneer2 0.8162 0.8119 0.8794 0.9494 0.9086 0.9495

babble 0.7687 0.7676 0.8556 0.7310 0.6873 0.7788

engine 0.8556 0.8521 0.9036 0.9546 0.8791 0.9069

hfchannel 0.8814 0.8797 0.9134 0.9480 0.8626 0.9312

machinegun 0.5934 0.5869 0.7860 0.7481 0.3423 0.9380

pink 0.7802 0.7776 0.8609 0.9434 0.8777 0.9481

volvo 0.9594 0.9594 0.9327 0.9273 0.9501 0.9561

white 0.8601 0.8572 0.8901 0.9609 0.9096 0.9521

average 0.8172 0.8134 0.8532 0.9051 0.8352 0.9213

Note: The italicized numbers mean the best performance among all evaluated
algorithms with the specific noise
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Figure 7 provides the comparisons of six evaluated VAD
algorithms in terms of speech hit rate and non-speech hit
rate for different SNR levels ranging from 20 to −5 dB.
Note that the results show here are averaged values for
the whole set of noises. It can be concluded that:

1) Sohn-VAD algorithm yields a moderate behavior
with relatively high speech hit rate but slightly low
non-speech hit rate.

2) Harmfreq-VAD, LTSV-VAD, and LSFM-VAD algo-
rithms also obtain a moderate behavior with rela-
tively high non-speech hit rate but slightly low
speech hit rate.

3) The LTSD-VAD algorithm yields the best speech hit
rate while non-speech hit rate is poor.

4) The LTPD-VAD achieves the best compromise
among the four evaluated VADs. The speech hit rate

of LTPD-VAD is less than all the other methods in
clean conditions (above 5 dB) but better than Harm-
freq, LTSV, and LSFM in noisy conditions (−5 dB).
Moreover, its non-speech hit rate is much better
than all the other methods in all cases.

Table 2 compares the LTPD-VAD with the other
VAD methods in terms of the average speech/non-
speech hit rates. LTPD-VAD yields an 87.77 % HR0
average value which is 27.97, 13.07, and 48.85 %
higher than that of Sohn, Harmfreq, and LTSD-VAD
methods, respectively. And LTPD-VAD attains a
94.23 % average speech hit rate while Sohn, Harm-
freq, and LTSD-VAD provide 96.25, 90.63, and
98.28 %, respectively. Thus, considering speech and
non-speech hit rates together, LTPD-VAD is more su-
perior to the other VAD algorithms.

Fig. 6 ROC curves of the evaluated VAD algorithms under −5 dB SNR
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5 Conclusions
In this paper, a new VAD algorithm is presented for
improving the performance of speech detection ro-
bustness in various noisy environments. The algo-
rithm is based on the estimation of long-term pitch
envelope and measure of long-term pitch divergence
between speeches and noises. And an adapted LTPD
decision threshold is also given using the measured
signal-to-noise ratios. The experimental results show
that the proposed method outperforms the other up-
to-date VAD algorithms under the most non-
stationary noisy environments and is more robust
than other VAD algorithms even at low SNR due to
the highest non-speech hit rate and a moderate
speech hit rate.
However, from the experimental results, it can be ar-

gued that LTSV-based VAD method is superior to
LTPD-based algorithm in some noisy environments
(m109, opsroom, engine, and hfchannel). This may

indicate that the long-term signal variability based on loga-
rithmic spectrum decomposition, constructed by combin-
ing pitch feature with LTSV feature, may be suitable for
VAD tasks. Further, comparing with strict logarithmic scale,
some critical-band-based scales is more conforming to
human perception of speech signals. Hence, studies of com-
bining these critical-band-based spectrum decomposition
with long-term spectral divergence or long-term signal
variability are worth further exploration.

6 Endnotes
1http://dnt.kr.hsnr.de/aurora/download/fant.tar.gz
2http://resources.mpi-inf.mpg.de/MIR/chromatoolbox/
3http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

voicebox.html
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Table 2 Average speech and non-speech hit rates for SNR
levels ranging from 20 to −5 dB

VAD Sohn Harmfreq LTSD LTSV LSFM LTPD

HR0 (%) 59.80 74.70 38.92 81.51 76.00 87.77

HR1 (%) 96.25 90.63 98.28 90.34 87.77 94.23

Note: The italicized numbers mean the highest average speech or non-speech
hit rate among all evaluated algorithms

Fig. 7 Speech/non-speech hit rates of the evaluated algorithms under different SNR levels
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